Download Free Exploration Seismic Tomography Book in PDF and EPUB Free Download. You can read online Exploration Seismic Tomography and write the review.

This tutorial serves as a practical guide on seismic tomography for an audience familiar with basic seismology concepts and calculus. The intent is to provide the reader with a fundamental understanding of both seismic-ray tomography and seismic-diffraction tomography. Case studies illustrate processing methodology, basic interpretation techniques, and pitfalls. This presentation assists the reader in gaining a greater understanding of and appreciation for seismic-tomography articles found in the literature.
In the geophysics of oil exploration and reservoir studies, the surface seismic method is the most commonly used method to obtain a subsurface model in 2 or 3 dimensions. This method plays an increasingly important role in soil investigations for geotechnical, hydrogeological and site characterization studies regarding seismic hazard issues. The goal of this book is to provide a practical guide, using examples from the field, to the application of seismic methods to surface imaging. After reviewing the current state of knowledge in seismic wave propagation, refraction and reflection seismic methods, the book aims to describe how seismic tomography and fullwave form inversion methods can be used to obtain seismic images of the subsurface. Through various synthetic and field examples, the book highlights the benefit of combining different sets of data: refracted waves with reflected waves, and body waves with surface waves. With field data targeting shallow structures, it shows how more accurate geophysical models can be obtained by using the proposed hybrid methods. Finally, it shows how the integration of seismic data (3D survey and VSP), logging data (acoustic logging) and core measurements, combined with a succession of specific and advanced processing techniques, enables the development of a 3D high resolution geological model in depth. In addition to these examples, the authors provide readers with guidelines to carry out these operations, in terms of acquisition, as well as processing and interpretation. In each chapter, the reader will find theoretical concepts, practical rules and, above all, actual application examples. For this reason, the book can be used as a text to accompany course lectures or continuing education seminars. This book aims to promote the exchange of information among geologists, geophysicists, and engineers in geotechnical fields.
Covering ideas and methods while concentrating on fundamentals, this book includes wave motion; digital imaging; digital filtering; visualization aspects of the seismic reflection method; sampling theory; the frequency spectrum; synthetic seismograms; wavelet processing; deconvolution; seismic attributes; phase rotation; and seismic attenuation.
This volume assists geophysicists in both implementing and evaluating DMO processing. It discusses the theory, motives, and limitations underlying the most popular DMO methods.
This book provides a systematic review of tomographic applications in seismology and the future directions. Theories and case histories are discussed by the international authors, drawing on their own practical experiences with global and local case histories.
Consisting of more than 150 articles written by leading experts, this authoritative reference encompasses the entire field of solid-earth geophysics. It describes in detail the state of current knowledge, including advanced instrumentation and techniques, and focuses on important areas of exploration geophysics. It also offers clear and complete coverage of seismology, geodesy, gravimetry, magnetotellurics and related areas in the adjacent disciplines of physics, geology, oceanography and space science.
Includes discussions of fundamental concepts, explained using heuristic descriptions of seismic modelling, deconvolution, depth migration, and tomography; processing and contouring pitfalls; and developments in time-lapse seismology, borehole geophysics, multicomponent seismology, and integrated reservoir characterization.
This is the completely updated revision of the highly regarded book Exploration Seismology. Available now in one volume, this textbook provides a complete and systematic discussion of exploration seismology. The first part of the book looks at the history of exploration seismology and the theory - developed from the first principles of physics. All aspects of seismic acquisition are then described. The second part of the book goes on to discuss data-processing and interpretation. Applications of seismic exploration to groundwater, environmental and reservoir geophysics are also included. The book is designed to give a comprehensive up-to-date picture of the applications of seismology. Exploration Seismology's comprehensiveness makes it suitable as a text for undergraduate courses for geologists, geophysicists and engineers, as well as a guide and reference work for practising professionals.
An overview of the current techniques used in the inversion of seismic data is provided. Inversion is defined as mapping the physical structure and properties of the subsurface of the earth using measurements made on the surface, creating a model of the earth using seismic data as input.