Download Free Exploration Of The Cyanidioschyzon Merolae Intron Landscape Book in PDF and EPUB Free Download. You can read online Exploration Of The Cyanidioschyzon Merolae Intron Landscape and write the review.

The eukaryotic process of pre-mRNA splicing involves the removal of noncoding intron sequences and the fusion of the remaining protein-coding exon sequences. The splicing reaction is catalyzed by the spliceosome, a dynamic multi-megadalton ribonucleoprotein complex that, in humans, is composed of 5 small nuclear RNAs (snRNAs) and over 200 associated proteins acting on more that 200,000 introns present within 25,000 genes. The unicellular red alga Cyanidioschyzon merolae possesses a more tractable splicing environment, with only 4 snRNAs and 75 associated proteins interacting with 27 annotated introns found in 26 our of 5,331 genes. Intron-rich genomes can confer benefits to their host species such as improved gene expression, incredible proteomic diversity, and increased genetic stability. This raises the question of why intron-poor C. merolae has retained such a small number of introns and a dramatically reduced spliceosome. A comprehensive investigation into the precise role that introns play in C. merolae would require the systematic removal of introns and an analysis of the effects thereof. The ability to elucidate the role of splicing in C. merolae via genome-wide intron deletion, however, hinges on the feasibility of establishing the efficiently scalable CRISPR genome engineering tool in C. merolae. It also follows that such an endeavour would require an accurate picture of the intron landscape of C. merolae, and since the number of annotated introns in C. merolae is relatively small, it is especially vital to determine whether any introns are missing from the C. merolae annotation. To that end, a stable and inducible Cas9-expressing strain of C. merolae was successfully developed. Transcriptome analysis using RNA-seq data revealed the discovery of 11 novel introns and 1 misannotated intron, as well as the presence of alternative splicing in the form of alternative splice site usage.
In recent years, the study of the plant cell cycle has become of major interest, not only to scientists working on cell division sensu strictu , but also to scientists dealing with plant hormones, development and environmental effects on growth. The book The Plant Cell Cycle is a very timely contribution to this exploding field. Outstanding contributors reviewed, not only knowledge on the most important classes of cell cycle regulators, but also summarized the various processes in which cell cycle control plays a pivotal role. The central role of the cell cycle makes this book an absolute must for plant molecular biologists.
Abstract: This book presents contemporary information on mutagenesis in plants and its applications in plant breeding and research. The topics are classified into sections focusing on the concepts, historical development and genetic basis of plant mutation breeding (chapters 1-6); mutagens and induced mutagenesis (chapters 7-13); mutation induction and mutant development (chapters 14-23); mutation breeding (chapters 24-34); or mutations in functional genomics (chapters 35-41). This book is an essential reference for those who are conducting research on mutagenesis as an approach to improving or modifying a trait, or achieving basic understanding of a pathway for a trait --.
Microalgae are a group of single-celled, photosynthetic microorganisms. They are of great commercial interest as they are capable of producing biomass (with a vast array of biochemical) using sunlight, CO2 and various other naturally occurring nutrients. Correctly utilised, they have the potential to provide sustainable supply of commercially relevant biochemicals, biofuels, nutraceuticals, food and feed supplements. The field of microalgal biotechnology is a fast-paced area of research, with technologies coming ever closer to commercial viability. Microalgal Biotechnology consolidates the latest research in the field together with a look at market potential and policy considerations. Highlighting the huge potential of microalgae as commercial commodities, it covers progress on various fronts including; bio-refinery and its technological challenges, genetic engineering, biosafety and regulatory issues, open and closed photo-bioreactors for biomass production, market space and sustainability for algal products. This book is a useful resource for researchers, academicians, postgraduate students, industries, policy makers and anyone interested in the status and future possibilities of microalgae commercialisation.
This Microbiology Monographs volume covers the current and most recent advances in genomics and genetics, biochemistry, physiology, and molecular biology of C. reinhardtii. Expert international scientists contribute with reviews on the genome, post-genomic techniques, the genetic toolbox development as well as new insights in regulation of photosynthesis and acclimation strategies towards environmental stresses and other structural and genetic aspects, including applicable aspects in biotechnology and biomedicine. Powerful new strategies in functional genomic and genetics combined with biochemical and physiological analyses revealed new insights into Chlamydomonas biology.
This textbook aims to describe the fascinating area of eukaryotic gene regulation for graduate students in all areas of the biomedical sciences. Gene expression is essential in shaping the various phenotypes of cells and tissues and as such, regulation of gene expression is a fundamental aspect of nearly all processes in physiology, both in healthy and in diseased states. This pivotal role for the regulation of gene expression makes this textbook essential reading for students of all the biomedical sciences, in order to be better prepared for their specialized disciplines. A complete understanding of transcription factors and the processes that alter their activity is a major goal of modern life science research. The availability of the whole human genome sequence (and that of other eukaryotic genomes) and the consequent development of next-generation sequencing technologies have significantly changed nearly all areas of the biological sciences. For example, the genome-wide location of histone modifications and transcription factor binding sites, such as provided by the ENCODE consortium, has greatly improved our understanding of gene regulation. Therefore, the focus of this book is the description of the post-genome understanding of gene regulation. The purpose of this book is to provide, in a condensed form, an overview on the present understanding of the mechanisms of gene regulation. The authors are not aiming to compete with comprehensive treatises, but rather focus on the essentials. Therefore, the authors have favored a high figure-to-text ratio following the rule stating that “a picture tells more than thousand words”. The content of the book is based on the lecture course, which is given by Prof. Carlberg since 2001 at the University of Eastern Finland in Kuopio. The book is subdivided into 4 sections and 13 chapters. Following the Introduction there are three sections, which take a view on gene regulation from the perspective of transcription factors, chromatin and non-coding RNA, respectively. Besides its value as a textbook, Mechanisms of Gene Regulation will be a useful reference for individuals working in biomedical laboratories.
In this timely new 2-volume treatise, experts from around the world have banded together to produce a first-of-its-kind synopsis of the exciting and fast moving field of plant evolutionary genomics. In Volume I of Plant Genome Diversity, an update is provided on what we have learned from plant genome sequencing projects. This is followed by more focused chapters on the various genomic “residents” of plant genomes, including transposable elements, centromeres, small RNAs, and the evolutionary dynamics of genes and non-coding sequences. Attention is drawn to advances in our understanding of plant mitochondrial and plastid genomes, as well as the significance of duplication in genic evolution and the non-independent evolution among sequences in plant genomes. Finally, Volume I provides an introduction to the vibrant new frontier of plant epigenomics, describing the current state of our knowledge and the evolutionary implications of the epigenomic landscape.
Published in a modern, user-friendly format this fully revised and updated edition of The Handbook of Protoctista (1990) is the resource for those interested in the biology, diversity and evolution of eukaryotic microorganisms and their descendants, exclusive of animals, plants and fungi. With chapters written by leading researchers in the field, the content reflects the present state of knowledge of the cell and genome biology, evolutionary relationships and ecological/medical/economic importance each major group of protists, organized according to current protist systematics as informed by molecular phylogenetics and genomics.