Download Free Exploration And Exploitation Techniques For High Dimensional Simulation Based Optimization Problems In Urban Transportation Book in PDF and EPUB Free Download. You can read online Exploration And Exploitation Techniques For High Dimensional Simulation Based Optimization Problems In Urban Transportation and write the review.

Nature-Inspired Optimization Algorithms provides a systematic introduction to all major nature-inspired algorithms for optimization. The book's unified approach, balancing algorithm introduction, theoretical background and practical implementation, complements extensive literature with well-chosen case studies to illustrate how these algorithms work. Topics include particle swarm optimization, ant and bee algorithms, simulated annealing, cuckoo search, firefly algorithm, bat algorithm, flower algorithm, harmony search, algorithm analysis, constraint handling, hybrid methods, parameter tuning and control, as well as multi-objective optimization. This book can serve as an introductory book for graduates, doctoral students and lecturers in computer science, engineering and natural sciences. It can also serve a source of inspiration for new applications. Researchers and engineers as well as experienced experts will also find it a handy reference. - Discusses and summarizes the latest developments in nature-inspired algorithms with comprehensive, timely literature - Provides a theoretical understanding as well as practical implementation hints - Provides a step-by-step introduction to each algorithm
The increasing power of computer technologies, the evolution of software en- neering and the advent of the intelligent transport systems has prompted traf c simulation to become one of the most used approaches for traf c analysis in s- port of the design and evaluation of traf c systems. The ability of traf c simulation to emulate the time variability of traf c phenomena makes it a unique tool for capturing the complexity of traf c systems. In recent years, traf c simulation – and namely microscopic traf c simulation – has moved from the academic to the professional world. A wide variety of traf- c simulation software is currently available on the market and it is utilized by thousands of users, consultants, researchers and public agencies. Microscopic traf c simulation based on the emulation of traf c ows from the dynamics of individual vehicles is becoming one the most attractive approaches. However, traf c simulation still lacks a uni ed treatment. Dozens of papers on theory and applications are published in scienti c journals every year. A search of simulation-related papers and workshops through the proceedings of the last annual TRB meetings would support this assertion, as would a review of the minutes from speci cally dedicated meetings such as the International Symposiums on Traf c Simulation (Yokohama, 2002; Lausanne, 2006; Brisbane, 2008) or the International Workshops on Traf c Modeling and Simulation (Tucson, 2001; Barcelona, 2003; Sedona, 2005; Graz 2008). Yet, the only comprehensive treatment of the subject to be found so far is in the user’s manuals of various software products.
The Bulletin of the Atomic Scientists is the premier public resource on scientific and technological developments that impact global security. Founded by Manhattan Project Scientists, the Bulletin's iconic "Doomsday Clock" stimulates solutions for a safer world.
This book provides an in-depth analysis of the current evolutionary machine learning techniques. Discussing the most highly regarded methods for classification, clustering, regression, and prediction, it includes techniques such as support vector machines, extreme learning machines, evolutionary feature selection, artificial neural networks including feed-forward neural networks, multi-layer perceptron, probabilistic neural networks, self-optimizing neural networks, radial basis function networks, recurrent neural networks, spiking neural networks, neuro-fuzzy networks, modular neural networks, physical neural networks, and deep neural networks. The book provides essential definitions, literature reviews, and the training algorithms for machine learning using classical and modern nature-inspired techniques. It also investigates the pros and cons of classical training algorithms. It features a range of proven and recent nature-inspired algorithms used to train different types of artificial neural networks, including genetic algorithm, ant colony optimization, particle swarm optimization, grey wolf optimizer, whale optimization algorithm, ant lion optimizer, moth flame algorithm, dragonfly algorithm, salp swarm algorithm, multi-verse optimizer, and sine cosine algorithm. The book also covers applications of the improved artificial neural networks to solve classification, clustering, prediction and regression problems in diverse fields.
This book provides both the research and practitioner communities with a comprehensive coverage of the metaheuristic methodologies that have proven to be successful in a wide variety of real-world problem settings. Moreover, it is these metaheuristic strategies that hold particular promise for success in the future. The various chapters serve as stand alone presentations giving both the necessary background underpinnings as well as practical guides for implementation.
This book introduces readers to genetic algorithms (GAs) with an emphasis on making the concepts, algorithms, and applications discussed as easy to understand as possible. Further, it avoids a great deal of formalisms and thus opens the subject to a broader audience in comparison to manuscripts overloaded by notations and equations. The book is divided into three parts, the first of which provides an introduction to GAs, starting with basic concepts like evolutionary operators and continuing with an overview of strategies for tuning and controlling parameters. In turn, the second part focuses on solution space variants like multimodal, constrained, and multi-objective solution spaces. Lastly, the third part briefly introduces theoretical tools for GAs, the intersections and hybridizations with machine learning, and highlights selected promising applications.
An overview of the rapidly growing field of ant colony optimization that describes theoretical findings, the major algorithms, and current applications. The complex social behaviors of ants have been much studied by science, and computer scientists are now finding that these behavior patterns can provide models for solving difficult combinatorial optimization problems. The attempt to develop algorithms inspired by one aspect of ant behavior, the ability to find what computer scientists would call shortest paths, has become the field of ant colony optimization (ACO), the most successful and widely recognized algorithmic technique based on ant behavior. This book presents an overview of this rapidly growing field, from its theoretical inception to practical applications, including descriptions of many available ACO algorithms and their uses. The book first describes the translation of observed ant behavior into working optimization algorithms. The ant colony metaheuristic is then introduced and viewed in the general context of combinatorial optimization. This is followed by a detailed description and guide to all major ACO algorithms and a report on current theoretical findings. The book surveys ACO applications now in use, including routing, assignment, scheduling, subset, machine learning, and bioinformatics problems. AntNet, an ACO algorithm designed for the network routing problem, is described in detail. The authors conclude by summarizing the progress in the field and outlining future research directions. Each chapter ends with bibliographic material, bullet points setting out important ideas covered in the chapter, and exercises. Ant Colony Optimization will be of interest to academic and industry researchers, graduate students, and practitioners who wish to learn how to implement ACO algorithms.
This SpringerBrief bridges the gap between the areas of simulation studies on the one hand, and optimization with natural computing on the other. Since natural computing methods have been applied with great success in several application areas, a review concerning potential benefits and pitfalls for simulation studies is merited. The brief presents such an overview and combines it with an introduction to natural computing and selected major approaches, as well as with a concise treatment of general simulation-based optimization. As such, it is the first review which covers both the methodological background and recent application cases. The brief is intended to serve two purposes: First, it can be used to gain more information concerning natural computing, its major dialects, and their usage for simulation studies. It also covers the areas of multi-objective optimization and neuroevolution. While the latter is only seldom mentioned in connection with simulation studies, it is a powerful potential technique. Second, the reader is provided with an overview of several areas of simulation-based optimization which range from logistic problems to engineering tasks. Additionally, the brief focuses on the usage of surrogate and meta-models. The brief presents recent application examples.
Computational optimization is an important paradigm with a wide range of applications. In virtually all branches of engineering and industry, we almost always try to optimize something - whether to minimize the cost and energy consumption, or to maximize profits, outputs, performance and efficiency. In many cases, this search for optimality is challenging, either because of the high computational cost of evaluating objectives and constraints, or because of the nonlinearity, multimodality, discontinuity and uncertainty of the problem functions in the real-world systems. Another complication is that most problems are often NP-hard, that is, the solution time for finding the optimum increases exponentially with the problem size. The development of efficient algorithms and specialized techniques that address these difficulties is of primary importance for contemporary engineering, science and industry. This book consists of 12 self-contained chapters, contributed from worldwide experts who are working in these exciting areas. The book strives to review and discuss the latest developments concerning optimization and modelling with a focus on methods and algorithms for computational optimization. It also covers well-chosen, real-world applications in science, engineering and industry. Main topics include derivative-free optimization, multi-objective evolutionary algorithms, surrogate-based methods, maximum simulated likelihood estimation, support vector machines, and metaheuristic algorithms. Application case studies include aerodynamic shape optimization, microwave engineering, black-box optimization, classification, economics, inventory optimization and structural optimization. This graduate level book can serve as an excellent reference for lecturers, researchers and students in computational science, engineering and industry.
The Harmony Search Algorithm (HSA) is one of the most well-known techniques in the field of soft computing, an important paradigm in the science and engineering community. This volume, the proceedings of the 2nd International Conference on Harmony Search Algorithm 2015 (ICHSA 2015), brings together contributions describing the latest developments in the field of soft computing with a special focus on HSA techniques. It includes coverage of new methods that have potentially immense application in various fields. Contributed articles cover aspects of the following topics related to the Harmony Search Algorithm: analytical studies; improved, hybrid and multi-objective variants; parameter tuning; and large-scale applications. The book also contains papers discussing recent advances on the following topics: genetic algorithms; evolutionary strategies; the firefly algorithm and cuckoo search; particle swarm optimization and ant colony optimization; simulated annealing; and local search techniques. This book offers a valuable snapshot of the current status of the Harmony Search Algorithm and related techniques, and will be a useful reference for practising researchers and advanced students in computer science and engineering.