Download Free Explaining Sciences Success Book in PDF and EPUB Free Download. You can read online Explaining Sciences Success and write the review.

Paul Feyeraband famously asked, what's so great about science? One answer is that it has been surprisingly successful in getting things right about the natural world, more successful than non-scientific or pre-scientific systems, religion or philosophy. Science has been able to formulate theories that have successfully predicted novel observations. It has produced theories about parts of reality that were not observable or accessible at the time those theories were first advanced, but the claims about those inaccessible areas have since turned out to be true. And science has, on occasion, advanced on more or less a priori grounds theories that subsequently turned out to be highly empirically successful. In this book the philosopher of science, John Wright delves deep into science's methodology to offer an explanation for this remarkable success story.
Do you want to develop useful skills, gain admission to top colleges, win scholarship money, excel at science competitions, and explore career options--all while having fun?By reading this book and using the advice within it, you will learn how to formulate a research project idea, find people who can help you complete it, effectively present it to diverse audiences, and participate successfully in research competitions. Whether you are a freshman rookie with a vague interest in science or a senior veteran striving for first place at the Science Talent Search, this guide will help you make the most of your research experience.With its testimonials from high school students whose lives were positively changed by their research experiences, this guide also aims to motivate and empower students who otherwise would not pursue science and research opportunities. In doing so, this book also seeks to encourage more students to pursue science and technology."What Shiv Gaglani and his co-authors offer with this book is a well-crafted and practical guide for any high school student who wants to participate in (and win!) the Intel Science Talent Search, Intel International Science and Engineering Fair, or any similar research endeavor. As sponsors of these programs, we regularly get requests for exactly this information from all around the globe. I am excited to be able to point students, educators and parents to this valuable resource." Wendy Hawkins, Executive Director of the Intel Foundation"The Winners' Guide offers terrific insight and information to encourage increased numbers of students and teachers to seek out lab-based experiences to enrich and strengthen their scientific acumen." Joann P. DiGennaro, President of the Center for Excellence in Education
Science and the Quest for Reality is an interdisciplinary anthology that situates contemporary science within its complex philosophical, historical, and sociological contexts. The anthology is divided between, firstly, characterizing science as an intellectual activity and, secondly, defining its social role. The philosophical and historical vicissitudes of science's truth claims has raised profound questions concerning the role of science in society beyond its technological innovations. The deeper philosophical issues thus complement the critical inquiry concerning the broader social and ethical influence of contemporary science. In the tradition of the 'Main Trends of the Modern World' series, this volume includes both classical and contemporary works on the subject.
"This volume presents an attempt to construct a unified cognitive theory of science in relatively short compass. It confronts the strong program in sociology of science and the positions of various postpositivist philosophers of science, developing significant alternatives to each in a reeadily comprehensible sytle. It draws loosely on recent developments in cognitive science, without burdening the argument with detailed results from that source. . . . The book is thus a provocative one. Perhaps that is a measure of its value: it will lead scholars and serious student from a number of science studies disciplines into continued and sharpened debate over fundamental questions."—Richard Burian, Isis "The writing is delightfully clear and accessible. On balance, few books advance our subject as well."—Paul Teller, Philosophy of Science
“The Knowledge Machine is the most stunningly illuminating book of the last several decades regarding the all-important scientific enterprise.” —Rebecca Newberger Goldstein, author of Plato at the Googleplex A paradigm-shifting work, The Knowledge Machine revolutionizes our understanding of the origins and structure of science. • Why is science so powerful? • Why did it take so long—two thousand years after the invention of philosophy and mathematics—for the human race to start using science to learn the secrets of the universe? In a groundbreaking work that blends science, philosophy, and history, leading philosopher of science Michael Strevens answers these challenging questions, showing how science came about only once thinkers stumbled upon the astonishing idea that scientific breakthroughs could be accomplished by breaking the rules of logical argument. Like such classic works as Karl Popper’s The Logic of Scientific Discovery and Thomas Kuhn’s The Structure of Scientific Revolutions, The Knowledge Machine grapples with the meaning and origins of science, using a plethora of vivid historical examples to demonstrate that scientists willfully ignore religion, theoretical beauty, and even philosophy to embrace a constricted code of argument whose very narrowness channels unprecedented energy into empirical observation and experimentation. Strevens calls this scientific code the iron rule of explanation, and reveals the way in which the rule, precisely because it is unreasonably close-minded, overcomes individual prejudices to lead humanity inexorably toward the secrets of nature. “With a mixture of philosophical and historical argument, and written in an engrossing style” (Alan Ryan), The Knowledge Machine provides captivating portraits of some of the greatest luminaries in science’s history, including Isaac Newton, the chief architect of modern science and its foundational theories of motion and gravitation; William Whewell, perhaps the greatest philosopher-scientist of the early nineteenth century; and Murray Gell-Mann, discoverer of the quark. Today, Strevens argues, in the face of threats from a changing climate and global pandemics, the idiosyncratic but highly effective scientific knowledge machine must be protected from politicians, commercial interests, and even scientists themselves who seek to open it up, to make it less narrow and more rational—and thus to undermine its devotedly empirical search for truth. Rich with illuminating and often delightfully quirky illustrations, The Knowledge Machine, written in a winningly accessible style that belies the import of its revisionist and groundbreaking concepts, radically reframes much of what we thought we knew about the origins of the modern world.
One of the pathways by which the scientific community confirms the validity of a new scientific discovery is by repeating the research that produced it. When a scientific effort fails to independently confirm the computations or results of a previous study, some fear that it may be a symptom of a lack of rigor in science, while others argue that such an observed inconsistency can be an important precursor to new discovery. Concerns about reproducibility and replicability have been expressed in both scientific and popular media. As these concerns came to light, Congress requested that the National Academies of Sciences, Engineering, and Medicine conduct a study to assess the extent of issues related to reproducibility and replicability and to offer recommendations for improving rigor and transparency in scientific research. Reproducibility and Replicability in Science defines reproducibility and replicability and examines the factors that may lead to non-reproducibility and non-replicability in research. Unlike the typical expectation of reproducibility between two computations, expectations about replicability are more nuanced, and in some cases a lack of replicability can aid the process of scientific discovery. This report provides recommendations to researchers, academic institutions, journals, and funders on steps they can take to improve reproducibility and replicability in science.
A comprehensive introduction to the philosophy of science. Introduces the key topics, such as the scientific method, rationalism and empiricism, as well as more advanced topics such as realism and antirealism.
Teaching Science to Every Child proposes a fresh perspective for teaching school science and draws upon an extensive body of classroom research to meaningfully address the achievement gap in science education. Settlage and Southerland begin from the point of view that science can be thought of as a culture, rather than as a fixed body of knowledge. Throughout this book, the idea of culture is used to illustrate how teachers can guide all students to be successful in science while still being respectful of students' ethnic heritages and cultural traditions. By combining a cultural view of science with instructional approaches shown to be effective in a variety of settings, the authors provide elementary and middle school teachers with a conceptual framework as well as pedagogical approaches which support the science learning of a diverse array of students.
To most of us, learning something "the hard way" implies wasted time and effort. Good teaching, we believe, should be creatively tailored to the different learning styles of students and should use strategies that make learning easier. Make It Stick turns fashionable ideas like these on their head. Drawing on recent discoveries in cognitive psychology and other disciplines, the authors offer concrete techniques for becoming more productive learners. Memory plays a central role in our ability to carry out complex cognitive tasks, such as applying knowledge to problems never before encountered and drawing inferences from facts already known. New insights into how memory is encoded, consolidated, and later retrieved have led to a better understanding of how we learn. Grappling with the impediments that make learning challenging leads both to more complex mastery and better retention of what was learned. Many common study habits and practice routines turn out to be counterproductive. Underlining and highlighting, rereading, cramming, and single-minded repetition of new skills create the illusion of mastery, but gains fade quickly. More complex and durable learning come from self-testing, introducing certain difficulties in practice, waiting to re-study new material until a little forgetting has set in, and interleaving the practice of one skill or topic with another. Speaking most urgently to students, teachers, trainers, and athletes, Make It Stick will appeal to all those interested in the challenge of lifelong learning and self-improvement.
The institutionalization of History and Philosophy of Science as a distinct field of scholarly endeavour began comparatively earl- though not always under that name - in the Australasian region. An initial lecturing appointment was made at the University of Melbourne immediately after the Second World War, in 1946, and other appoint ments followed as the subject underwent an expansion during the 1950s and 1960s similar to that which took place in other parts of the world. Today there are major Departments at the University of Melbourne, the University of New South Wales and the University of Wollongong, and smaller groups active in many other parts of Australia and in New Zealand. "Australasian Studies in History and Philosophy of Science" aims to provide a distinctive publication outlet for Australian and New Zealand scholars working in the general area of history, philosophy and social studies of science. Each volume comprises a group of essays on a connected theme, edited by an Australian or a New Zealander with special expertise in that particular area. Papers address general issues, however, rather than local ones; parochial topics are avoided. Further more, though in each volume a majority of the contributors is from Australia or New Zealand, contributions from elsewhere are by no means ruled out. Quite the reverse, in fact - they are actively encour aged wherever appropriate to the balance of the volume in question.