Download Free Experimental Root Cause Analysis Of Low Speed Pre Ignition Mechanisms On A Turbocharged Gasoline Engine With Direct Injection Book in PDF and EPUB Free Download. You can read online Experimental Root Cause Analysis Of Low Speed Pre Ignition Mechanisms On A Turbocharged Gasoline Engine With Direct Injection and write the review.

The concept of increasing power density is a successful approach to improving the conflict between efficiency and emission behavior of spark-ignition engine drive units for light-duty vehicles. This leads to highly charged gasoline engines with direct injection and high specific torque and power densities, promoting a not yet fully understood combustion anomaly known as low-speed pre-ignition (LSPI). This unpredictable, multicyclic phenomenon limits the depictable in-cylinder pressures, further efficiency gains and engine reliability. Only with a holistic understanding of the LSPI root cause mechanisms and processes can targeted countermeasures be taken and further efficiency gains achieved. A novel methodology pathway for LSPI root cause analysis was developed to accompany the entire LSPI event emergence process path by means of a multi-experimental approach on a modern high efficiency engine. This includes the identification of key LSPI activity – engine parameter specification relations, minimally invasive high-speed endoscopic imaging and further LSPI key experiments. Only the accumulation of inorganic substances originating from lubricating oil additives enables specific deposits/particles to ignite the surrounding mixture over a multicyclic process due to the resulting increased oxidation reactivity. Through a final synthesis step of all results, a multi-cycle oxidation-reactivity-enhanced deposit/particle-driven LSPI root cause mechanism is established.
Various combinations of commercially available technologies could greatly reduce fuel consumption in passenger cars, sport-utility vehicles, minivans, and other light-duty vehicles without compromising vehicle performance or safety. Assessment of Technologies for Improving Light Duty Vehicle Fuel Economy estimates the potential fuel savings and costs to consumers of available technology combinations for three types of engines: spark-ignition gasoline, compression-ignition diesel, and hybrid. According to its estimates, adopting the full combination of improved technologies in medium and large cars and pickup trucks with spark-ignition engines could reduce fuel consumption by 29 percent at an additional cost of $2,200 to the consumer. Replacing spark-ignition engines with diesel engines and components would yield fuel savings of about 37 percent at an added cost of approximately $5,900 per vehicle, and replacing spark-ignition engines with hybrid engines and components would reduce fuel consumption by 43 percent at an increase of $6,000 per vehicle. The book focuses on fuel consumption-the amount of fuel consumed in a given driving distance-because energy savings are directly related to the amount of fuel used. In contrast, fuel economy measures how far a vehicle will travel with a gallon of fuel. Because fuel consumption data indicate money saved on fuel purchases and reductions in carbon dioxide emissions, the book finds that vehicle stickers should provide consumers with fuel consumption data in addition to fuel economy information.
The book includes the papers presented at the conference discussing approaches to prevent or reliably control knocking and other irregular combustion events. The majority of today’s highly efficient gasoline engines utilize downsizing. High mean pressures produce increased knocking, which frequently results in a reduction in the compression ratio at high specific powers. Beyond this, the phenomenon of pre-ignition has been linked to the rise in specific power in gasoline engines for many years. Charge-diluted concepts with high compression cause extreme knocking, potentially leading to catastrophic failure. The introduction of RDE legislation this year will further grow the requirements for combustion process development, as residual gas scavenging and enrichment to improve the knock limit will be legally restricted despite no relaxation of the need to reach the main center of heat release as early as possible. New solutions in thermodynamics and control engineering are urgently needed to further increase the efficiency of gasoline engines.
This book brings together data from Czechoslovakia on vapor pressures, data from England on critical properties, and data from America on physical properties of organic and organometallic compounds to provide a basic reference book for engineers and scientists involved with research and design in the chemical and petroleum industries. We would like to acknowledge Jaroslav Dykyj, Milan Repas, and Josef Svo boda of Czechoslovakia for providing the material on Antoine constants and Douglas Ambrose of the University of London for providing the material on critical properties. Stanislaw Malanowski pointed out and made available the sources of data from Eastern Europe. Richard Stephenson translated and correlated the data in tabular form. We would like to thank Dr. Matej Andras of the Slovenska Literarna Agentura for granting permission to use the data from Czechoslovakia and Dr. Marjan Bace of Elsevier Science Publishing Co., Inc., who encouraged preparation of this manuscript and handled the publishing arrangements. Particular thanks go to Mary Stephenson for typing the entire camera-ready copy. Richard M. Stephenson University of Connecticut Storrs, Connecticut Stanislaw Malanowski Institute of Physical Chemistry Warsaw, Poland vii Introduction All scientific and engineering calculations are dependent on the availability of thermodynamic and physical property data for the materials or systems in question. This dependency is particularly true in engineering design, which relies almost exclusively on computers for accurate data to produce meaningful final designs.
The process of fuel injection, spray atomization and vaporization, charge cooling, mixture preparation and the control of in-cylinder air motion are all being actively researched and this work is reviewed in detail and analyzed. The new technologies such as high-pressure, common-rail, gasoline injection systems and swirl-atomizing gasoline fuel injections are discussed in detail, as these technologies, along with computer control capabilities, have enabled the current new examination of an old objective; the direct-injection, stratified-charge (DISC), gasoline engine. The prior work on DISC engines that is relevant to current GDI engine development is also reviewed and discussed. The fuel economy and emission data for actual engine configurations have been obtained and assembled for all of the available GDI literature, and are reviewed and discussed in detail. The types of GDI engines are arranged in four classifications of decreasing complexity, and the advantages and disadvantages of each class are noted and explained. Emphasis is placed upon consensus trends and conclusions that are evident when taken as a whole; thus the GDI researcher is informed regarding the degree to which engine volumetric efficiency and compression ratio can be increased under optimized conditions, and as to the extent to which unburned hydrocarbon (UBHC), NOx and particulate emissions can be minimized for specific combustion strategies. The critical area of GDI fuel injector deposits and the associated effect on spray geometry and engine performance degradation are reviewed, and important system guidelines for minimizing deposition rates and deposit effects are presented. The capabilities and limitations of emission control techniques and after treatment hardware are reviewed in depth, and a compilation and discussion of areas of consensus on attaining European, Japanese and North American emission standards presented. All known research, prototype and production GDI engines worldwide are reviewed as to performance, emissions and fuel economy advantages, and for areas requiring further development. The engine schematics, control diagrams and specifications are compiled, and the emission control strategies are illustrated and discussed. The influence of lean-NOx catalysts on the development of late-injection, stratified-charge GDI engines is reviewed, and the relative merits of lean-burn, homogeneous, direct-injection engines as an option requiring less control complexity are analyzed.
Traditionally, the study of internal combustion engines operation has focused on the steady-state performance. However, the daily driving schedule of automotive and truck engines is inherently related to unsteady conditions. In fact, only a very small portion of a vehicle’s operating pattern is true steady-state, e. g. , when cruising on a motorway. Moreover, the most critical conditions encountered by industrial or marine engines are met during transients too. Unfortunately, the transient operation of turbocharged diesel engines has been associated with slow acceleration rate, hence poor driveability, and overshoot in particulate, gaseous and noise emissions. Despite the relatively large number of published papers, this very important subject has been treated in the past scarcely and only segmentally as regards reference books. Merely two chapters, one in the book Turbocharging the Internal Combustion Engine by N. Watson and M. S. Janota (McMillan Press, 1982) and another one written by D. E. Winterbone in the book The Thermodynamics and Gas Dynamics of Internal Combustion Engines, Vol. II edited by J. H. Horlock and D. E. Winterbone (Clarendon Press, 1986) are dedicated to transient operation. Both books, now out of print, were published a long time ago. Then, it seems reasonable to try to expand on these pioneering works, taking into account the recent technological advances and particularly the global concern about environmental pollution, which has intensified the research on transient (diesel) engine operation, typically through the Transient Cycles certification of new vehicles.
Direct injection enables precise control of the fuel/air mixture so that engines can be tuned for improved power and fuel economy, but ongoing research challenges remain in improving the technology for commercial applications. As fuel prices escalate DI engines are expected to gain in popularity for automotive applications. This important book, in two volumes, reviews the science and technology of different types of DI combustion engines and their fuels. Volume 1 deals with direct injection gasoline and CNG engines, including history and essential principles, approaches to improved fuel economy, design, optimisation, optical techniques and their applications. - Reviews key technologies for enhancing direct injection (DI) gasoline engines - Examines approaches to improved fuel economy and lower emissions - Discusses DI compressed natural gas (CNG) engines and biofuels
Fundamentals of Combustion Processes is designed as a textbook for an upper-division undergraduate and graduate level combustion course in mechanical engineering. The authors focus on the fundamental theory of combustion and provide a simplified discussion of basic combustion parameters and processes such as thermodynamics, chemical kinetics, ignition, diffusion and pre-mixed flames. The text includes exploration of applications, example exercises, suggested homework problems and videos of laboratory demonstrations