Download Free Experimental Investigation On Behavior Of Steel Fiber Reinforced Concrete Sfrc Book in PDF and EPUB Free Download. You can read online Experimental Investigation On Behavior Of Steel Fiber Reinforced Concrete Sfrc and write the review.

This book discusses design aspects of steel fiber-reinforced concrete (SFRC) members, including the behavior of the SFRC and its modeling. It also examines the effect of various parameters governing the response of SFRC members in detail. Unlike other publications available in the form of guidelines, which mainly describe design methods based on experimental results, it describes the basic concepts and principles of designing structural members using SFRC as a structural material, predominantly subjected to flexure and shear. Although applications to special structures, such as bridges, retaining walls, tanks and silos are not specifically covered, the fundamental design concepts remain the same and can easily be extended to these elements. It introduces the principles and related theories for predicting the role of steel fibers in reinforcing concrete members concisely and logically, and presents various material models to predict the response of SFRC members in detail. These are then gradually extended to develop an analytical flexural model for the analysis and design of SFRC members. The lack of such a discussion is a major hindrance to the adoption of SFRC as a structural material in routine design practice. This book helps users appraise the role of fiber as reinforcement in concrete members used alone and/or along with conventional rebars. Applications to singly and doubly reinforced beams and slabs are illustrated with examples, using both SFRC and conventional reinforced concrete as a structural material. The influence of the addition of steel fibers on various mechanical properties of the SFRC members is discussed in detail, which is invaluable in helping designers and engineers create optimum designs. Lastly, it describes the generally accepted methods for specifying the steel fibers at the site along with the SFRC mixing methods, storage and transport and explains in detail methods to validate the adopted design. This book is useful to practicing engineers, researchers, and students.
Examines how the "strength parameters of steel reinforced concrete is affected by different compaction methods and varying fibre content". The testing of 234 concrete beams and cylinders containing 0-5% fibre content were involved.
This book sheds light on the shear behavior of Fiber Reinforced Concrete (FRC) elements, presenting a thorough analysis of the most important studies in the field and highlighting their shortcomings and issues that have been neglected to date. Instead of proposing a new formula, which would add to an already long list, it instead focuses on existing design codes. Based on a comparison of experimental tests, it provides a thorough analysis of these codes, describing both their reliability and weaknesses. Among other issues, the book addresses the influence of flange size on shear, and the possible inclusion of the flange factor in design formulas. Moreover, it reports in detail on tests performed on beams made of concrete of different compressive strengths, and on fiber reinforcements to study the influence on shear, including size effects. Lastly, the book presents a thorough analysis of FRC hollow core slabs. In fact, although this is an area of great interest in the current research landscape, it remains largely unexplored due to the difficulties encountered in attempting to fit transverse reinforcement in these elements.
This volume highlights the latest advances, innovations, and applications in the field of fibre reinforced concrete (FRC) and discusses a diverse range of topics concerning FRC: rheology and early-age properties, mechanical properties, codes and standards, long-term properties, durability, analytical and numerical models, quality control, structural and Industrial applications, smart FRC’s, nanotechnologies related to FRC, textile reinforced concrete, structural design and UHPFRC. The contributions present improved traditional and new ideas that will open novel research directions and foster multidisciplinary collaboration between different specialists. Although the symposium was postponed, the book gathers peer-reviewed papers selected in 2020 for the RILEM-fib International Symposium on Fibre Reinforced Concrete (BEFIB).
FRACTURE MECHANICS OF CONCRETE AND ROCK This book offers engineers a unique opportunity to learn, frominternationally recognized leaders in their field, about the latesttheoretical advances in fracture mechanics in concrete, reinforcedconcrete structures, and rock. At the same time, it functions as asuperb, graduate-level introduction to fracture mechanics conceptsand analytical techniques. Reviews, in depth, the basic theory behind fracture mechanics * Covers the application of fracture mechanics to compressionfailure, creep, fatigue, torsion, and other advanced topics * Extremely well researched, applies experimental evidence ofdamage to a wide range of design cases * Supplies all relevant formulas for stress intensity * Covers state-of-the-art linear elastic fracture mechanics (LEFM)techniques for analyzing deformations and cracking * Describes nonlinear fracture mechanics (NLFM) and the latestRILEM modeling techniques for testing nonlinear quasi-brittlematerials * And much more Over the past few years, researchers employing techniques borrowedfrom fracture mechanics have made many groundbreaking discoveriesconcerning the causes and effects of cracking, damage, andfractures of plain and reinforced concrete structures and rock.This, in turn, has resulted in the further development andrefinement of fracture mechanics concepts and tools. Yet, despitethe field's growth and the growing conviction that fracturemechanics is indispensable to an understanding of material andstructural failure, there continues to be a surprising shortage oftextbooks and professional references on the subject. Written by two of the foremost names in the field, FractureMechanics of Concrete fills that gap. The most comprehensive bookever written on the subject, it consolidates the latest theoreticalresearch from around the world in a single reference that can beused by students and professionals alike. Fracture Mechanics of Concrete is divided into two sections. In thefirst, the authors lay the necessary groundwork with an in-depthreview of fundamental principles. In the second section, theauthors vividly demonstrate how fracture mechanics has beensuccessfully applied to failures occurring in a wide array ofdesign cases. Key topics covered in these sections include: * State-of-the-art linear elastic fracture mechanics (LEFM)techniques for analyzing deformations and cracking * Nonlinear fracture mechanics (NLFM) and the latest RILEM modelingtechniques for testing nonlinear quasi-brittle materials * The use of R-Curves to describe cracking and fracture inquasi-brittle materials * The application of fracture mechanics to compression failure,creep, fatigue, torsion, and other advanced topics The most timely, comprehensive, and authoritative book on thesubject currently available, Fracture Mechanics of Concrete is botha complete instructional tool for academics and students instructural and geotechnical engineering courses, and anindispensable working resource for practicing engineers.
This research investigates the effect of anchor groups on concrete breakout strength within steel fiber reinforced concrete (SFRC) under tension load. High strength steel headed studs (F1554 Grade 105) in grouping action were cast-in-place within concrete specimens of different amounts of steel fibers. Four types of concrete mix designs were produced in the lab by using different amounts of steel fibers (0%, 0.5%, 1%, and 1.5%) by volume fraction of the mixture. The physical properties of steel fibers reinforced concrete were calculated through testing of specimens at the Civil Engineering Laboratory Building (CELB). In total, 12 cylinder specimens of 4-inch diameter and 8-inch height for compressive strength, 12 cylinder specimens of 6-inch diameter and 12-inch height for split tensile test, 12 beam specimens of 6*6*20 inch for modulus of rupture and flexural behavior. 4 concrete beams of 54*18*10 inch were cast-in-place with 12 sets of anchor groups were installed and tested after 28 days of curing. Embedment depth and distance between anchors for all group sets are kept constant. The effective embedment depth and the spacing between two anchors in grouping action are specified as per ACI 318-19.The experiments revealed that the increase of the amount of the steel fiber fraction increases the concrete breakout strength of anchor groups in tension by 43.33%, 73.42%, and 81.1% for 0.5%, 1.0%, and 1.5% volume fraction of steel fibers respectively. The research shows that the diameter of the concrete failure cone was reduced by increasing steel fibers. The failure angle increased by 14.6%, 48.5%, and 70% for 0.5%, 1.0%, and 1.5%. The concrete breakout strengths for anchor groups were compared with single anchors were tested at the same conditions. The anchors group effect reduces the concrete breakout strength by (19.45%, 16.8%, 15.7%, and 14%) for (0.0, 0.5, 1.0, and 1.5%) steel fiber compared with single anchor. Concrete compressive strength increased by (9.5%, 25.5%, and 17.5%) for (0.5%, 1%, and 1.5%) steel fibers respectively. The split tensile strength increased by (20.5%, 32.63%, and 35.35%) for (0.5%, 1%, and 1.5%) steel fibers and the flexural of concrete increased also by (3.7%, 9.8%, and 16.4%). Finally compare the experimental results of the concrete breakout strength with modified Concrete Capacity Design Method (CCD).