Download Free Experimental Investigation Of Heat Transfer To Supercritical Pressure Carbon Dioxide In A Horizontal Pipe Book in PDF and EPUB Free Download. You can read online Experimental Investigation Of Heat Transfer To Supercritical Pressure Carbon Dioxide In A Horizontal Pipe and write the review.

In the vicinity of the pseudocritical point, supercritical carbon dioxide (sCO2) undergoes a steep change in properties from “liquid-like” to “gas-like” as it is heated at a constant pressure. At the same time, there is a large spike in specific heat which can yield high heat transfer coefficients and heat capacity rates. These unique properties have made sCO2 an attractive working fluid in next generation power and HVAC&R technologies. Microchannel heat exchangers are being used to safely and efficiently utilize the high pressure fluid in these applications. However, prior investigation of heating of supercritical CO2 has primarily focused on circular, uniformly heated channels at relatively low heat flux for nuclear power applications. Thus, it is unclear if models and correlations developed from large circular tube data can be scaled down to the smaller, non-circular channels, with non-uniform heating. In the present work, a methodology is developed to experimentally characterize heat transfer for multiple parallel microchannels with a hydraulic diameter of 0.75 mm and aspect ratio of 1. Experiments are conducted over a range of heat fluxes (20 ≤ q” ≤ 40 W cm−2), mass fluxes (500 ≤ G ≤ 1000 kg m−2 s−1), reduced pressure (1.03 ≤ P[subscript R] ≤ 1.1), and inlet temperatures (20 ≤ T[subscript in] ≤ 100°C) in a parallel square microchannel test article with a single-wall constant heat flux boundary condition. Local and average heat transfer coefficients are experimentally measured and the results are compared to previously developed correlations. The predictive capabilities for the supercritical models were poor, with the lowest mean absolute percent error (MAPE) of 55.3% for the range of bulk fluid temperatures, heat fluxes, and mass fluxes. Interestingly, subcritical correlations were also investigated and yielded much lower MAPE than 80% of the supercritical correlations even though the effects of variable fluid properties were not taken into account. The subcritical correlations did not incorporate property ratios to account for the variability in fluid properties; in some supercritical correlations it was found to add additional uncertainty for the case of the present study. The effects of buoyancy and flow acceleration were also evaluated. Based on dimensionless criteria, buoyancy was expected to play a role in heat transfer, especially when the bulk fluid temperature is below the pseudocritical temperature. However, the relative importance of flow acceleration was inconclusive. Despite the apparent importance of buoyancy effects, heat transfer was not degraded, as would be expected in larger, circular, uniformly heated tubes. The mixed convection could be inducing a density driven swirling with the stratification of low-density fluid near the top (unheated). This would ultimately improve the heat transfer at the bottom portion of the test section channels. Therefore, the flow geometry and the non-conventional heated boundary could be improving the heat transfer even with buoyancy driven effects under supercritical conditions.
A timely and comprehensive introduction to CO2 heat pump theory and usage A comprehensive introduction of CO2 application in heat pump, authored by leading scientists in the field CO2 is a hot topic due to concerns over global warming and the 'greenhouse effect'. Its disposal and application has attracted considerable research and governmental interest Explores the basic theories, devices, systems and cycles and real application designs for varying applications, ensuring comprehensive coverage of a current topic CO2 heat transfer has everyday applications including water heaters, air-conditioning systems, residential and commercial heating systems, and cooling systems
The proceedings of the 20th International Conference on Fluidized Bed Combustion (FBC) collect 9 plenary lectures and 175 peer-reviewed technical papers presented in the conference held in Xi'an China in May 18-21,2009. The conference was the 20th conference in a series, covering the latest fundamental research results, as well as the application experience from pilot plants, demonstrations and industrial units regarding to the FBC science and technology. It was co-hosted by Tsinghua University, Southeast University, Zhejiang University, China Electricity Council and Chinese Machinery Industry Federation. A particular feature of the proceedings is the balance between the papers submitted by experts from industry and the papers submitted by academic researchers, aiming to bring academic knowledge to application as well as to define new areas for research. The authors of the proceedings are the most active researchers, technology developers, experienced and representative facility operators and manufacturers. They presented the latest research results, state-of-the-art development and projects, and the useful experience. The proceedings are divided into following sections: • CFB Boiler Technology, Operation and Design • Fundamental Research on Fluidization and Fluidized Combustion • C02 Capture and Chemical Looping • Gasification • Modeling and Simulation on FBC Technology • Environments and Pollutant Control • Sustainable Fuels The proceedings can be served as idea references for researchers, engineers, academia and graduate students, plant operators, boiler manufacturers, component suppliers, and technical managers who work on FBC fundamental research, technology development and industrial application.
Supercritical fluids are increasingly being used in energy conversion and fluid dynamics studies for energy-related systems and applications. These new applications are contributing to both the increase of energy efficiency as well as greenhouse gas reduction. Such research is critical for scientific advancement and industrial innovations that can support environmentally friendly strategies for sustainable energy systems. The Handbook of Research on Advancements in Supercritical Fluids Applications for Sustainable Energy Systems is a comprehensive two-volume reference that covers the most recent and challenging issues and outlooks for the applications and innovations of supercritical fluids. The book first converts basic thermo-dynamic behaviors and “abnormal” properties from a thermophysical aspect, then basic heat transfer and flow properties, recent new findings of its physical aspect and indications, chemical engineering properties, micro-nano-scale phenomena, and transient behaviors in fast and critical environments. It is ideal for engineers, energy companies, environmentalists, researchers, academicians, and students studying supercritical fluids and their applications for creating sustainable energy systems.