Download Free Experimental Investigation Of Bulk Flame Quenching In A Direct Injection Spark Ignition Engine Book in PDF and EPUB Free Download. You can read online Experimental Investigation Of Bulk Flame Quenching In A Direct Injection Spark Ignition Engine and write the review.

Abstract : Dilute combustion is an effective way to increase part-load efficiencies in a Spark Ignition (SI) engine. However, dilute combustion leads to a slower combustion rate and longer burn durations, which results in higher heat transfer loss. To overcome this, some degree of charge flow enhancement exists in modern engines that improves combustion rate and shortens burn durations. This flow enhancement has an adverse effect on performance of the modern Transistorized Coil Ignition (TCI) system and hence presents a limitation on improving combustion rates. Additionally, dilute combustion has a detrimental effect on combustion stability, wherein a larger variation in engine cycle work is observed from cycle to cycle which degrades engine performance. Improving combustion stability under dilution poses a challenge for the modern single coil ignition system, which is where the motivation lies in this research. This research details the development and instrumentation of a Configurable Dual Coil Ignition (CDCI) system that is later tested on a single cylinder metal engine. The effectiveness of different ignition profiles developed with the CDCI system in extending the dilution limit while maintaining combustion performance and lower cycle-cycle variations, thereby improving fuel conversion efficiency, is investigated. Effects of dilution by excess air and internal (exhaust) residuals on the performance of these ignition profiles are investigated under different operating conditions. In-cylinder flow is enhanced by means of tumble planks installed in the intake port of the engine. The impact of enhanced in-cylinder flow on the capabilities of the developed ignition profiles is also investigated under different conditions. Moreover, effects of different spark plug gap sizes and orientations are also investigated. Although majority of the tests are done with Direct Injection (DI) gasoline, some tests are performed with Port Fuel Injection (PFI) methane to compare the effects of fuel delivery and charge preparation.
Emission and fuel economy regulations and standards are compelling manufacturers to build ultra-low emission vehicles. As a result, engineers must develop spark-ignition engines with integrated emission control systems that use reformulated low-sulfur fuel. Emission Control and Fuel Economy for Port and Direct Injected SI Engines is a collection of SAE technical papers that covers the fundamentals of gasoline direct injection (DI) engine emissions and fuel economy, design variable effects on HC emissions, and advanced emission control technology and modeling approaches. All papers contained in this book were selected by an accomplished expert as the best in the field; reprinted in their entirety, they present a pathway to integrated emission control systems that meet 2004-2009 EPA standards for light-duty vehicles.