Download Free Existence Of Solutions To A Class Of Quasi Static Problems In Viscoplasticity Theory Book in PDF and EPUB Free Download. You can read online Existence Of Solutions To A Class Of Quasi Static Problems In Viscoplasticity Theory and write the review.

The steady increase in computational power induces an equally steady increase in the complexity of the engineering models and associated computer codes. This particularly affects the modeling of the mechanical response of materials. Material behavior is nowadays modeled in the strongly nonlinear range by tak ing into account finite strains, complex hysteresis effects, fracture phenomena and multiscale features. Progress in this field is of fundamental importance for many engineering disciplines, especially those concerned with material testing, safety, reliability and serviceability analyses of engineering structures. In recent years many important achievements have been made in the field of the theoretical formulation, the mathematical analysis and the numerical im plementation of deformation processes in solids. Computational methods and simulation techniques today play a central role in advancing the understanding of complex material behavior. Research in the field of "ComputationalMechan ics of Materials" is concerned with the development of mathematical models and numerical solution techniques for the simulation of material response. It is a very broad interdisciplinary field of science with inputs from traditional fields such as Applied Mechanics, Applied Mathematics, Materials Science, Solid State Physics and Information Technology. The intention of the IUTAM Symposium "Computational Mechanics of Solid Materials at Large Strains", held at the University of Stuttgart, Germany, from August 20-24, 200I, was to give a state of the art and a survey about recent developments in this field and to create perspectives for future research trends.
This volume is devoted to the life and work of the applied mathematician Professor Erhard Meister (1930-2001). He was a member of the editorial boards of this book series Operator The ory: Advances and Applications as well as of the journal Integral Equations and Operator Theory, both published by Birkhauser (now part of Springer-Verlag). Moreover he played a decisive role in the foundation of these two series by helping to establish contacts between Birkhauser and the founder and present chief editor of this book series after his emigration from Moldavia in 1974. The volume is divided into two parts. Part A contains reminiscences about the life of E. Meister including a short biography and an exposition of his professional work. Part B displays the wide range of his scientific interests through eighteen original papers contributed by authors with close scientific and personal relations to E. Meister. We hope that a great part of the numerous features of his life and work can be re-discovered from this book.
This volume contains more than sixty invited papers of international wellknown scientists in the fields where Alain Bensoussan's contributions have been particularly important: filtering and control of stochastic systems, variationnal problems, applications to economy and finance, numerical analysis... In particular, the extended texts of the lectures of Professors Jens Frehse, Hitashi Ishii, Jacques-Louis Lions, Sanjoy Mitter, Umberto Mosco, Bernt Oksendal, George Papanicolaou, A. Shiryaev, given in the Conference held in Paris on December 4th, 2000 in honor of Professor Alain Bensoussan are included.
This book introduces readers to a mathematical theory of contact problems involving deformable bodies. It covers mechanical modeling, mathematical formulations, variational analysis, and the numerical solution of the associated formulations. The authors give a complete treatment of some contact problems by presenting arguments and results in modeling, analysis, and numerical simulations. Variational analysis of the models includes existence and uniqueness results of weak solutions,as well as results of continuous dependence of the solution on the data and parameters. Also discussed are links between different mechanical models.
This book is devoted to the deformation and failure in metallic materials, summarizing the results of a research programme financed by the "Deutsche Forschungsgemeinschaft". It presents the recent engineering as well as mathematical key aspects of this field for a broad community. Its main focus is on the constitutive behaviour as well as the damage and fracture of metallic materials, covering their mathematical foundation, modelling and numerics, but also relevant experiments and their verification.
This monograph presents an original method to unify the mathematical theories of well-posed problems and contact mechanics. The author uses a new concept called the Tykhonov triple to develop a well-posedness theory in which every convergence result can be interpreted as a well-posedness result. This will be useful for studying a wide class of nonlinear problems, including fixed-point problems, inequality problems, and optimal control problems. Another unique feature of the manuscript is the unitary treatment of mathematical models of contact, for which new variational formulations and convergence results are presented. Well-Posed Nonlinear Problems will be a valuable resource for PhD students and researchers studying contact problems. It will also be accessible to interested researchers in related fields, such as physics, mechanics, engineering, and operations research.
This book introduces the reader the theory of nonlinear inclusions and hemivariational inequalities with emphasis on the study of contact mechanics. The work covers both abstract results in the area of nonlinear inclusions, hemivariational inequalities as well as the study of specific contact problems, including their modelling and their variational analysis. Provided results are based on original research on the existence, uniqueness, regularity and behavior of the solution for various classes of nonlinear stationary and evolutionary inclusions. In carrying out the variational analysis of various contact models, one systematically uses results of hemivariational inequalities and, in this way, illustrates the applications of nonlinear analysis in contact mechanics. New mathematical methods are introduced and applied in the study of nonlinear problems, which describe the contact between a deformable body and a foundation. Contact problems arise in industry, engineering and geophysics. Their variational analysis presented in this book lies the background for their numerical analysis. This volume will interest mathematicians, applied mathematicians, engineers, and scientists as well as advanced graduate students.
This monograph provides both an introduction to and a thorough exposition of the theory of rate-independent systems, which the authors have been working on with a lot of collaborators over 15 years. The focus is mostly on fully rate-independent systems, first on an abstract level either with or even without a linear structure, discussing various concepts of solutions with full mathematical rigor. Then, usefulness of the abstract concepts is demonstrated on the level of various applications primarily in continuum mechanics of solids, including suitable approximation strategies with guaranteed numerical stability and convergence. Particular applications concern inelastic processes such as plasticity, damage, phase transformations, or adhesive-type contacts both at small strains and at finite strains. A few other physical systems, e.g. magnetic or ferroelectric materials, and couplings to rate-dependent thermodynamic models are considered as well. Selected applications are accompanied by numerical simulations illustrating both the models and the efficiency of computational algorithms. In this book, the mathematical framework for a rigorous mathematical treatment of "rate-independent systems" is presented in a comprehensive form for the first time. Researchers and graduate students in applied mathematics, engineering, and computational physics will find this timely and well written book useful.
Índice: Function spaces and their properties; Introduction to finite difference and finite element approximations; Variational inequalities; Constitutive relations in solid mechanics; Background on variational and numerical analysis in contact mechanics; Contact problems in elasticity; Bilateral contact with slip dependent friction; Frictional contact with normal compliance; Frictional contact with normal damped response; Other viscoelastic contact problems; Frictionless contact with dissipative potential; Frictionless contact between two viscoplastic bodies; Bilateral contact with Tresca's friction law; Other viscoelastic contact problems; Bibliography; Index.