Download Free Excitons Book in PDF and EPUB Free Download. You can read online Excitons and write the review.

The author develops the effective-mass theory of excitons in low-dimensional semiconductors and describes numerical methods for calculating the optical absorption including Coulomb interaction, geometry, and external fields. The theory is applied to Fano resonances in low-dimensional semiconductors and the Zener breakdown in superlattices. Comparing theoretical results with experiments, the book is essentially self-contained; it is a hands-on approach with detailed derivations, worked examples, illustrative figures, and computer programs. The book is clearly structured and will be valuable as an advanced-level self-study or course book for graduate students, lecturers, and researchers.
Bose-Einstein condensation of excitons is a unique effect in which the electronic states of a solid can self-organize to acquire quantum phase coherence. The phenomenon is closely linked to Bose-Einstein condensation in other systems such as liquid helium and laser-cooled atomic gases. This is the first book to provide a comprehensive survey of this field, covering theoretical aspects as well as recent experimental work. After setting out the relevant basic physics of excitons, the authors discuss exciton-phonon interactions as well as the behaviour of biexcitons. They cover exciton phase transitions and give particular attention to nonlinear optical effects including the optical Stark effect and chaos in excitonic systems. The thermodynamics of equilibrium, quasi-equilibrium, and nonequilibrium systems are examined in detail. The authors interweave theoretical and experimental results throughout the book, and it will be of great interest to graduate students and researchers in semiconductor and superconductor physics, quantum optics, and atomic physics.
Self-Trapped Excitons discusses the structure and evolution of the self-trapped exciton (STE) in a wide range of materials. It includes a comprehensive review of experiments and extensive tables of data. Emphasis is given throughout to the unity of the basic physics underlying various manifestations of self-trapping, with the theory being developed from a localized, atomistic perspective. The topics treated in detail in relation to STE relaxation include spontaneous symmetry breaking, lattice defect formation, radiation damage, and electronic sputtering.
This book presents the various types of resonance effects on excitons, biexcitons and the local electronic centers (LEC) in solids, such as paramagnetic and paraelectric resonances on excitons, exciton acoustic resonance at intra- and interband transitions, radio-optical double resonance on excitons, hole-nuclear double resonance on localized biexcitons, ENDOR and acoustic ENDOR on LEC. The criteria for the generation of coherent photons, phonons and magnons by excitons are explained. The interactions of excitons and biexcitons with paramagnetic centers and nuclear spins, the indirect interaction between the PC through a field of excitons as well as the quasienergy spectrum of excitons and spin systems are discussed. It is proved that the interaction of paramagnetic centers with excitons increases the spin relaxation rate of paramagnetic centers in comparison with the case of their interaction with free carriers. The giant magneto-optical effects in semi-magnetic semiconductors are theoretically interpreted. In recent years, a new perspective has been added to these systems and their interactions: They can be used for storing and processing information in the form of quantum bits (qubits), the building blocks of quantum computers. The basics of this emerging technology are explained and examples of demonstration-type quantum computers based on localized spins in solids are discussed.
Dynamics of Molecular Excitons provides a comprehensive, but concise description of major theories on the dynamics of molecular excitons, intended to serve as a self-contained resource on the topic. Designed to help those new to this area gain proficiency in this field, experts will also find the book useful in developing a deeper understanding of the subject. The starting point of the book is the standard microscopic definition of molecular Hamiltonians presented in commonly accepted modern quantum mechanical notations. Major assumptions and approximations involved in constructing Frenkel-type exciton Hamiltonians, which are well established, but are often hidden under arcane notations and approximations of old publications, are presented in detail. This will help quantum chemists understand the major assumptions involved in the definition of commonly used exciton models. Rate theories of exciton dynamics, such as Förster and Dexter theories and their modern generalizations, are presented in a unified and detailed manner. In addition, important aspects that are often neglected, such as local field effect and the role of fluctuating environments, are discussed. Various quantum dynamics methods allowing coherent dynamics of excitons are presented in a systematic manner in the context of quantum master equations or path integral formalisms. The author also provides a detailed theoretical explanation for the major spectroscopic techniques probing exciton dynamics, including modern two-dimensional electronic spectroscopy, with a critical assessment of the implications of these spectroscopic measurements. Finally, the book includes a brief overview of major applications including an explanation of organic photovoltaic materials and natural light harvesting complexes.
This book presents the first established experimental results of an emergent field: 2-dimensional materials as platforms for quantum technologies, specifically through the optics of quantum-confined excitons. It also provides an extensive review of the literature from a number of disciplines that informed the research, and introduces the materials of focus – 2d Transition Metal Dichalcogenides (2d-TMDs) – in detail, discussing electronic and chemical structure, excitonic behaviour and response to strain. This is followed by a brief overview of quantum information technologies, including concepts such as single-photon sources and quantum networks. The methods chapter addresses quantum optics techniques and 2d-material processing, while the results section shows the development of a method to deterministically create quantum dots (QDs) in the 2d-TMDs, which can trap single-excitons; the fabrication of atomically thin quantum light-emitting diodes to induce all-electrical single-photon emission from the QDs, and lastly, the use of devices to controllably trap single-spins in the QDs –the first step towards their use as optically-addressable matter qubits.
Optics of Excitons in Confined Systems provides an overview of research in semiconductors that exhibit resonance enhanced optical nonlinearities in the frequency range close to the valence-conduction band gap. The book is divided into the following sections: quantum wells, wires, and dots; superlattices; nonlinear optical properties of confined systems; and effects of external fields on confined systems. Topics range from fundamental theory to more applied aspects of excitons in confined sytems.
An exciton is an electronic excitation wave consisting of an electron-hole pair which propagates in a nonmetallic solid. Since the pioneering research of Fren kel, Wannier and the Pohl group in the 1930s, a large number of experimental and theoretical studies have been made. Due to these investigations the exciton is now a well-established concept and the electronic structure has been clarified in great detail. The next subjects for investigation are, naturally, dynamical processes of excitons such as excitation, relaxation, annihilation and molecule formation and, in fact, many interesting phenomena have been disclosed by recent works. These excitonic processes have been recognized to be quite important in solid-state physics because they involve a number of basic interactions between excitons and other elementary excitations. It is the aim of this quasi monograph to describe these excitonic processes from both theoretical and experimental points of view. we take a few To discuss and illustrate the excitonic processes in solids, important and well-investigated insulating crystals as playgrounds for excitons on which they play in a manner characteristic of each material. The selection of the materials is made in such a way that they possess some unique properties of excitonic processes and are adequate to cover important interactions in which excitons are involved. In each material, excitonic processes are described in detail from the experimental side in order to show the whole story of excitons in a particular material.