Download Free Exchange Bias Book in PDF and EPUB Free Download. You can read online Exchange Bias and write the review.

This timely book covers basic mechanisms, characterization, theoretical simulations, and applications for exchange bias in granular nanosystems, thin films, and bulk systems. After an overview of the field and key principles, the next section covers nanogranular (core-shell) systems, followed by chapters on thin films, bilayers/multilayers nanostructures, dilute magnetic semiconductors, and multiferroic systems. A final section turns to bulk systems, such as those consisting of perovskite structures, rare earth-transition metal intermetallic, and ion implantations. Readers of this book will obtain A complete, modern overview on exchange bias phenomena, covering synthesis, characterization techniques, and applications An introduction to all the important phenomenological models proposed for thin films, bulk materials, and nanoparticles Detailed discussion of the importance of size, shape, cooling field, and temperature on exchange bias properties Understanding of novel applications of exchange bias systems
Heterostructures consist of combinations of different materials, which are in contact through at least one interface. Magnetic heterostructures combine different physical properties which do not exist in nature. This book provides the first comprehensive overview of an exciting and fast developing field of research, which has already resulted in numerous applications and is the basis for future spintronic devices.
Intraday interest rates are zero. Consequently, a foreign exchange dealer can short a vulnerable currency in the morning, close this position in the afternoon, and never face an interest cost. This tactic might seem especially attractive in times of crisis, since it suggests an immunity to the central bank's interest rate defense. In equilibrium, however, buyers of the vulnerable currency must be compensated on average with an intraday capital gain as long as no devaluation occurs. That is, currencies under attack should typically appreciate intraday. Using data on intraday exchange rate changes within the EMS, we find this prediction is borne out.
Advances in Magnetic Materials: Processing, Properties, and Performance discusses recent developments of magnetic materials, including fabrication, characterization and applications in the aerospace, biomedical, and semiconductors industries. With contributions by international professionals who possess broad and varied expertise, this volume encompasses both bulk materials and thin films and coatings for magnetic applications. A timely reference book that describes such things as ferromagnetism, nanomaterials, and Fe, ZnO, and Co-based materials, Advances in Magnetic Materials is an ideal text for students, researchers, and professionals working in materials science. Describes recent developments of magnetic materials, including fabrication, characterization, and applications Addresses a variety of industrial applications, such as aerospace, biomedical, and semiconductors Discusses bulk materials and thin films and coatings Covers ferromagnetism, nanomaterials, Fe, ZnO, and Co-based materials Contains the contributions of international professionals with broad and varied expertise Covers a holistic range of magnetic materials in various aspects of process, properties, and performance
"Poignant....important and illuminating."—The New York Times Book Review "Groundbreaking."—Bryan Stevenson, New York Times bestselling author of Just Mercy From one of the world’s leading experts on unconscious racial bias come stories, science, and strategies to address one of the central controversies of our time How do we talk about bias? How do we address racial disparities and inequities? What role do our institutions play in creating, maintaining, and magnifying those inequities? What role do we play? With a perspective that is at once scientific, investigative, and informed by personal experience, Dr. Jennifer Eberhardt offers us the language and courage we need to face one of the biggest and most troubling issues of our time. She exposes racial bias at all levels of society—in our neighborhoods, schools, workplaces, and criminal justice system. Yet she also offers us tools to address it. Eberhardt shows us how we can be vulnerable to bias but not doomed to live under its grip. Racial bias is a problem that we all have a role to play in solving.
Written by well-known experts in the field, this first systematic overview of multiferroic heterostructures summarizes the latest developments, first presenting the fundamental mechanisms, including multiferroic materials synthesis, structures and mechanisms, before going on to look at device applications. The resulting text offers insight and understanding for scientists and students new to this area.
This book gives an overview of the physics of Heusler compounds ranging from fundamental properties of these alloys to their applications. Especially Heusler compounds as half-metallic ferromagnetic and topological insulators are important in condensed matter science due to their potential in magnetism and as materials for energy conversion. The book is written by world-leaders in this field. It offers an ideal reference to researchers at any level.
In magnetic systems of nano-meter size, the interplay between spin and charge of electrons provides unique transport phenomena. In magnetic superlattices, magnetic and non-magnetic metallic thin films with thickness of the order of one nano-meter are piled-up alternately. Since the discovery of giant magnetoresistance (GMR) in these superlattices in 1988, spin dependent transport phenomena in magnetic nanostructures have received much attention from both academic and technological points of view. Ferromagnetic tunnel junctions made of ferromagnetic metal electrodes and a very thin insulating barrier between them are also of current interest as magnetoresistive devices, where the tunneling current depends on the relative orientation of magnetization (TMR). In addition to magnetic superlattices and magnetic tunnel junctions, magnetic granular systems and magnetic dots have been studied extensively as magnetoresistive systems. Edited by two of the world's leading authorities, Spin Dependent Transport in Magnetic Nanostructures introduces and explains the basic physics and applications of a variety of spin-dependent transport phenomena in magnetic nanostructures with particular emphasis on magnetic multilayers and magnetic tunnel junctions.
The atomic arrangement and subsequent properties of a material are determined by the type and conditions of growth leading to epitaxy, making control of these conditions key to the fabrication of higher quality materials. Epitaxial Growth of Complex Metal Oxides reviews the techniques involved in such processes and highlights recent developments in fabrication quality which are facilitating advances in applications for electronic, magnetic and optical purposes. Part One reviews the key techniques involved in the epitaxial growth of complex metal oxides, including growth studies using reflection high-energy electron diffraction, pulsed laser deposition, hybrid molecular beam epitaxy, sputtering processes and chemical solution deposition techniques for the growth of oxide thin films. Part Two goes on to explore the effects of strain and stoichiometry on crystal structure and related properties, in thin film oxides. Finally, the book concludes by discussing selected examples of important applications of complex metal oxide thin films in Part Three. - Provides valuable information on the improvements in epitaxial growth processes that have resulted in higher quality films of complex metal oxides and further advances in applications for electronic and optical purposes - Examines the techniques used in epitaxial thin film growth - Describes the epitaxial growth and functional properties of complex metal oxides and explores the effects of strain and defects
Composite Magnetoelectrics: Materials, Structures, and Applications gives the reader a summary of the theory behind magnetoelectric phenomena, later introducing magnetoelectric materials and structures and the techniques used to fabricate and characterize them. Part two of the book looks at magnetoelectric devices. Applications include magnetic and current sensors, transducers for energy harvesting, microwave and millimeter wave devices, miniature antennas and medical imaging. The final chapter discusses progress towards magnetoelectric memory. - Summarises clearly the theory behind magnetoelectric phenomena - Strong coverage of fabrication and characterisation techniques - Reviews a broad range of current and potential magnetoelectric devices