Download Free Excel Scientific And Engineering Cookbook Book in PDF and EPUB Free Download. You can read online Excel Scientific And Engineering Cookbook and write the review.

Given the improved analytical capabilities of Excel, scientists and engineers everywhere are using it--instead of FORTRAN--to solve problems. And why not? Excel is installed on millions of computers, features a rich set of built-in analyses tools, and includes an integrated Visual Basic for Applications (VBA) programming language. No wonder it's today's computing tool of choice. Chances are you already use Excel to perform some fairly routine calculations. Now the Excel Scientific and Engineering Cookbook shows you how to leverage Excel to perform more complex calculations, too, calculations that once fell in the domain of specialized tools. It does so by putting a smorgasbord of data analysis techniques right at your fingertips. The book shows how to perform these useful tasks and others: Use Excel and VBA in general Import data from a variety of sources Analyze data Perform calculations Visualize the results for interpretation and presentation Use Excel to solve specific science and engineering problems Wherever possible, the Excel Scientific and Engineering Cookbook draws on real-world examples from a range of scientific disciplines such as biology, chemistry, and physics. This way, you'll be better prepared to solve the problems you face in your everyday scientific or engineering tasks. High on practicality and low on theory, this quick, look-up reference provides instant solutions, or "recipes," to problems both basic and advanced. And like other books in O'Reilly's popular Cookbook format, each recipe also includes a discussion on how and why it works. As a result, you can take comfort in knowing that complete, practical answers are a mere page-flip away.
Learn to fully harness the power of Microsoft Excel® to perform scientific and engineering calculations With this text as your guide, you can significantly enhance Microsoft Excel's® capabilities to execute the calculations needed to solve a variety of chemical, biochemical, physical, engineering, biological, and medicinal problems. The text begins with two chapters that introduce you to Excel's Visual Basic for Applications (VBA) programming language, which allows you to expand Excel's® capabilities, although you can still use the text without learning VBA. Following the author's step-by-step instructions, here are just a few of the calculations you learn to perform: Use worksheet functions to work with matrices Find roots of equations and solve systems of simultaneous equations Solve ordinary differential equations and partial differential equations Perform linear and non-linear regression Use random numbers and the Monte Carlo method This text is loaded with examples ranging from very basic to highly sophisticated solutions. More than 100 end-of-chapter problems help you test and put your knowledge to practice solving real-world problems. Answers and explanatory notes for most of the problems are provided in an appendix. The CD-ROM that accompanies this text provides several useful features: All the spreadsheets, charts, and VBA code needed to perform the examples from the text Solutions to most of the end-of-chapter problems An add-in workbook with more than twenty custom functions This text does not require any background in programming, so it is suitable for both undergraduate and graduate courses. Moreover, practitioners in science and engineering will find that this guide saves hours of time by enabling them to perform most of their calculations with one familiar spreadsheet package
This guide to Excel focuses on three areas--least squares, Fourier transformation, and digital simulation. It illustrates the techniques with detailed examples, many drawn from the scientific literature. It also includes and describes a number of sample macros and functions to facilitate common data analysis tasks. De Levie is affiliated with Bowdoin College. Annotation : 2004 Book News, Inc., Portland, OR (booknews.com).
Extract accurate information from data to train and improve machine learning models using NumPy, SciPy, pandas, and scikit-learn libraries Key FeaturesDiscover solutions for feature generation, feature extraction, and feature selectionUncover the end-to-end feature engineering process across continuous, discrete, and unstructured datasetsImplement modern feature extraction techniques using Python's pandas, scikit-learn, SciPy and NumPy librariesBook Description Feature engineering is invaluable for developing and enriching your machine learning models. In this cookbook, you will work with the best tools to streamline your feature engineering pipelines and techniques and simplify and improve the quality of your code. Using Python libraries such as pandas, scikit-learn, Featuretools, and Feature-engine, you’ll learn how to work with both continuous and discrete datasets and be able to transform features from unstructured datasets. You will develop the skills necessary to select the best features as well as the most suitable extraction techniques. This book will cover Python recipes that will help you automate feature engineering to simplify complex processes. You’ll also get to grips with different feature engineering strategies, such as the box-cox transform, power transform, and log transform across machine learning, reinforcement learning, and natural language processing (NLP) domains. By the end of this book, you’ll have discovered tips and practical solutions to all of your feature engineering problems. What you will learnSimplify your feature engineering pipelines with powerful Python packagesGet to grips with imputing missing valuesEncode categorical variables with a wide set of techniquesExtract insights from text quickly and effortlesslyDevelop features from transactional data and time series dataDerive new features by combining existing variablesUnderstand how to transform, discretize, and scale your variablesCreate informative variables from date and timeWho this book is for This book is for machine learning professionals, AI engineers, data scientists, and NLP and reinforcement learning engineers who want to optimize and enrich their machine learning models with the best features. Knowledge of machine learning and Python coding will assist you with understanding the concepts covered in this book.
Statistics and Probability for Engineering Applications provides a complete discussion of all the major topics typically covered in a college engineering statistics course. This textbook minimizes the derivations and mathematical theory, focusing instead on the information and techniques most needed and used in engineering applications. It is filled with practical techniques directly applicable on the job. Written by an experienced industry engineer and statistics professor, this book makes learning statistical methods easier for today's student. This book can be read sequentially like a normal textbook, but it is designed to be used as a handbook, pointing the reader to the topics and sections pertinent to a particular type of statistical problem. Each new concept is clearly and briefly described, whenever possible by relating it to previous topics. Then the student is given carefully chosen examples to deepen understanding of the basic ideas and how they are applied in engineering. The examples and case studies are taken from real-world engineering problems and use real data. A number of practice problems are provided for each section, with answers in the back for selected problems. This book will appeal to engineers in the entire engineering spectrum (electronics/electrical, mechanical, chemical, and civil engineering); engineering students and students taking computer science/computer engineering graduate courses; scientists needing to use applied statistical methods; and engineering technicians and technologists. * Filled with practical techniques directly applicable on the job* Contains hundreds of solved problems and case studies, using real data sets* Avoids unnecessary theory
"Field-tested solutions to Cisco router problems"--Cover.
The financial industry has recently adopted Python at a tremendous rate, with some of the largest investment banks and hedge funds using it to build core trading and risk management systems. Updated for Python 3, the second edition of this hands-on book helps you get started with the language, guiding developers and quantitative analysts through Python libraries and tools for building financial applications and interactive financial analytics. Using practical examples throughout the book, author Yves Hilpisch also shows you how to develop a full-fledged framework for Monte Carlo simulation-based derivatives and risk analytics, based on a large, realistic case study. Much of the book uses interactive IPython Notebooks.
"Solutions and examples for C++ programmers"--Cover.
Learn to fully harness the power of Microsoft Excel(r) to perform scientific and engineering calculations With this text as your guide, you can significantly enhance Microsoft Excel's(r) capabilities to execute the calculations needed to solve a variety of chemical, biochemical, physical, engineering, biological, and medicinal problems. The text begins with two chapters that introduce you to Excel's Visual Basic for Applications (VBA) programming language, which allows you to expand Excel's(r) capabilities, although you can still use the text without learning VBA. Following the author's step-by-step instructions, here are just a few of the calculations you learn to perform: * Use worksheet functions to work with matrices * Find roots of equations and solve systems of simultaneous equations * Solve ordinary differential equations and partial differential equations * Perform linear and non-linear regression * Use random numbers and the Monte Carlo method This text is loaded with examples ranging from very basic to highly sophisticated solutions. More than 100 end-of-chapter problems help you test and put your knowledge to practice solving real-world problems. Answers and explanatory notes for most of the problems are provided in an appendix. The CD-ROM that accompanies this text provides several useful features: * All the spreadsheets, charts, and VBA code needed to perform the examples from the text * Solutions to most of the end-of-chapter problems * An add-in workbook with more than twenty custom functions This text does not require any background in programming, so it is suitable for both undergraduate and graduate courses. Moreover, practitioners in science and engineering will find that this guide saves hours of time by enabling them to perform most of their calculations with one familiar spreadsheet package.
This unique text uses Microsoft Excel® workbooks to instruct students. In addition to explaining fundamental concepts in microeconomic theory, readers acquire a great deal of sophisticated Excel skills and gain the practical mathematics needed to succeed in advanced courses. In addition to the innovative pedagogical approach, the book features explicitly repeated use of a single central methodology, the economic approach. Students learn how economists think and how to think like an economist. With concrete, numerical examples and novel, engaging applications, interest for readers remains high as live graphs and data respond to manipulation by the user. Finally, clear writing and active learning are features sure to appeal to modern practitioners and their students. The website accompanying the text is found at www.depauw.edu/learn/microexcel.