Download Free Exact Solutions For Buckling Of Structural Members Book in PDF and EPUB Free Download. You can read online Exact Solutions For Buckling Of Structural Members and write the review.

The study of buckling loads, which often hinges on numerical methods, is key in designing structural elements. But the need for analytical solutions in addition to numerical methods is what drove the creation of Exact Solutions for Buckling of Structural Members. It allows readers to assess the reliability and accuracy of solutions obtained by nume
This book - comprised of three separate volumes - presents the recent developments and research discoveries in structural and solid mechanics; it is dedicated to Professor Isaac Elishakoff. This first volume is devoted to the statics and stability of solid and structural members. Modern Trends in Structural and Solid Mechanics 1 has broad scope, covering topics such as: buckling of discrete systems (elastic chains, lattices with short and long range interactions, and discrete arches), buckling of continuous structural elements including beams, arches and plates, static investigation of composite plates, exact solutions of plate problems, elastic and inelastic buckling, dynamic buckling under impulsive loading, buckling and post-buckling investigations, buckling of conservative and non-conservative systems and buckling of micro and macro-systems. This book is intended for graduate students and researchers in the field of theoretical and applied mechanics.
This book aims to present in depth several Higher-order Shear Deformation Theories (HSDTs) by means of a unified approach for the mechanical analysis of doubly-curved shell structures made of anisotropic and composite materials. In particular, the strong and weak formulations of the corresponding governing equations are discussed and illustrated. The approach presented in this volume is completely general and represents a valid tool to investigate the structural behavior of many arbitrarily shaped structures. An isogeometric mapping procedure is also illustrated to this aim. Special attention is given also to advanced and innovative constituents, such as Carbon Nanotubes (CNTs), Variable Angle Tow (VAT) composites and Functionally Graded Materials (FGMs). In addition, several numerical applications are developed to support the theoretical models. Accurate, efficient and reliable numerical techniques able to approximate both derivatives and integrals are presented, which are respectively the Differential Quadrature (DQ) and Integral Quadrature (IQ) methods. Finally, two numerical techniques, named Strong Formulation Finite Element Method (SFEM) and Weak Formulation Finite Element Method (WFEM), are developed to deal with multi-element domains characterized by arbitrary shapes and discontinuities.
This book highlights recent findings in industrial, manufacturing and mechanical engineering and provides an overview of the state of the art in these fields, mainly in Russia and Eastern Europe. A broad range of topics and issues in modern engineering is discussed, including the machinery and mechanism design, dynamics of machines and working processes, friction, wear and lubrication in machines, design and manufacturing engineering of industrial facilities, transport and technological machines, mechanical treatment of materials, industrial hydraulic systems. This book gathers selected papers presented at the 9th International Conference on Industrial Engineering (ICIE), held in Sochi, Russia, in May 2023. The authors are experts in various fields of engineering, and all papers have been carefully reviewed. Given its scope, this book will be of interest to a wide readership, including mechanical and production engineers, lecturers in engineering disciplines, and engineering graduates.
Perhaps the first book on this topic in more than 50 years, Design of Modern Steel Railway Bridges focuses not only on new steel superstructures but also outlines principles and methods that are useful for the maintenance and rehabilitation of existing steel railway bridges. It complements the recommended practices of the American Railway Engineering and Maintenance-of-way Association (AREMA), in particular Chapter 15-Steel Structures in AREMA’s Manual for Railway Engineering (MRE). The book has been carefully designed to remain valid through many editions of the MRE. After covering the basics, the author examines the methods for analysis and design of modern steel railway bridges. He details the history of steel railway bridges in the development of transportation systems, discusses modern materials, and presents an extensive treatment of railway bridge loads and moving load analysis. He then outlines the design of steel structural members and connections in accordance with AREMA recommended practice, demonstrating the concepts with worked examples. Topics include: A history of iron and steel railway bridges Engineering properties of structural steel typically used in modern steel railway bridge design and fabrication Planning and preliminary design Loads and forces on railway superstructures Criteria for the maximum effects from moving loads and their use in developing design live loads Design of axial and flexural members Combinations of forces on steel railway superstructures Copiously illustrated with more than 300 figures and charts, the book presents a clear picture of the importance of railway bridges in the national transportation system. A practical reference and learning tool, it provides a fundamental understanding of AREMA recommended practice that enables more effective design.
This book reviews the theoretical framework of nonlinear mechanics, covering computational methods, applications, parametric investigations of nonlinear phenomena and mechanical interpretation towards design. Builds skills via increasing levels of complexity.
The title, “Laminated Composite Doubly-Curved Shell Structures. Differential al Geometry and Higher-order Theories” illustrates the theme treated and the prospective followed during the composition of the present work. The aim of this manuscript is to analyze the static and dynamic behavior of thick and moderately thick composite shells through the application of the Differential Quadrature (DQ) method. The book is divided into two volumes wherein the principal higher order structural theories are illustrated in detail and the mechanical behavior of doubly-curved structures are presented by several static and dynamic numerical applications. In particular, the first volume is mainly theoretical, whereas the second one is mainly related to the numerical DQ technique and its applications in the structural field. The starting point to analyze higher-order structural theories is given by the so-called Unified Formulation (UF), which allows to consider and study several kinematic models in a unified manner. Both the Equivalent Single Layer (ESL) and Layer-Wise (LW) approaches are presented. A particular attention is paid to composite materials, due to their increasing development and use in many engineering fields during the last years.
This manuscript comes from the experience gained over thirteen years of study and research on shell structures. The title, Theory of Laminated Composite Doubly-Curved Shell Structures, illustrates the theme followed in the present volume. The present study aims to analyze the static and dynamic behavior of moderately thick shells made of composite materials. A particular attention is paid, other than fibrous and laminated composites, also to “Functionally graded materials” (FGMs). They are non-homogeneous materials, characterized by a continuous varia on of the mechanical properties through a particular direction. In particular, the present manuscript was written as an attempt to show, in an easy way, the theoretical aspects of doubly-curved composite shell structures. Furthermore, it focuses only on the theoretical aspects related to laminated composite doubly-curved shell structures and represents a shortened version of the book entitled: Mechanics of Laminated Composite Doubly-Curved Shell Structures by the same authors, wherein also the numerical part has been presented. The present volume is aimed at Master degree and PhD students in structural and applied mechanics, as well as experts in these fields. The present volume is divided into six chapters, in which static and dynamic analyses of several structural elements are provided in detail. Furthermore, the results of the adopted numerical technique are presented for several problems such as different loading and boundary conditions.
This new edition encompasses current design methods used for steel railway bridges in both SI and Imperial (US Customary) units. It discusses the planning of railway bridges and the appropriate types of bridges based on planning considerations.
Groundbreaking and comprizing articles by expert contributors, this volume provides a comprehensive treatment of VLFSs and their relationship with the sea, marine habitats, the pollution of costal waters and tidal and natural current flow. It looks in-depth at: VLFS and the colonization of ocean space with their appearance in the waters off developed coastal cities wave properties, which is essential for estimating the loading on the VLFS as well as for modelling structure-fluid interactions hydroelastic and structural analysis of VLFS at an overall level and the cell level the analysis and design of breakwaters simulation models to understand the actual flow of water through the VLFS and to determine the drift forces for the mooring systems anti-corrosion and maintenance systems new research and developments, with emphasis on the Mega-Float, a 1 km long floating test runway. Well-illustrated with photographs, drawings, equations for mathematical modelling and analysis and extensively referenced, Very Large Floating Structures is ideal for professionals, academics and students of civil and structural engineering.