Download Free Exact Renormalization Group The Proceedings Of The Workshop Book in PDF and EPUB Free Download. You can read online Exact Renormalization Group The Proceedings Of The Workshop and write the review.

The subject of the exact renormalization group started from pioneering work by Wegner and Houghton in the early seventies and, a decade later, by Polchinski, who formulated the Wilson renormalization group for field theory. In the past decade considerable progress has been made in this field, which includes the development of alternative formulations of the approach and of powerful techniques for solving the exact renormalization group equations, as well as widening of the scope of the exact renormalization group method to include fermions and gauge fields. In particular, two very recent results, namely the manifestly gauge-invariant formulation of the exact renormalization group equation and the proof of the c-theorem in four dimensions, are presented in this volume.
During the week of 3-8 June 1996, approximately 83 theoretical (and 2 experimental) physicists interested in the current problems of Quantum Chromodynamics (QCD) gathered at the American University of Paris, France, to present and discuss a total of 59 papers on Collisions, Confinement, and Chaos in QCD. Each of these three subfields filled at least two half-day sessions; and another four half-day sessions were devoted to miscellaneous and interesting papers on Quantum Field Theory (QFT), and especially on the proper construction of high-energy scattering amplitudes.
This volume is devoted to different facets of QCD, stressing non-perturbative, analytic and lattice formulations, scattering solutions and approximations, and the understanding of recent RHIC experiments. It discusses ideas of the fifth dimension, originating in brane theory, as well as possible experimental tests and predictions of those ideas.
This is the proceedings of the third Nagoya workshop on Strong Coupling Gauge Theories (SCGT), after SCGT 88 and SCGT 90. As a tradition of the Nagoya SCGT workshops, the focus is on dynamical symmetry breaking with particular emphasis on the nontrivial fixed points and/or large anomalous dimension, which was actually the basis of walking technicolor, strong ETC technicolor and top quark condensate, etc. Special attention is also paid to the fixed point structure in supersymmetric gauge theories, which has recently been highlighted through duality arguments.
Renormalization group theory of tensor network states provides a powerful tool for studying quantum many-body problems and a new paradigm for understanding entangled structures of complex systems. In recent decades the theory has rapidly evolved into a universal framework and language employed by researchers in fields ranging from condensed matter theory to machine learning. This book presents a pedagogical and comprehensive introduction to this field for the first time. After an introductory survey on the major advances in tensor network algorithms and their applications, it introduces step-by-step the tensor network representations of quantum states and the tensor-network renormalization group methods developed over the past three decades. Basic statistical and condensed matter physics models are used to demonstrate how the tensor network renormalization works. An accessible primer for scientists and engineers, this book would also be ideal as a reference text for a graduate course in this area.
Contents:Critical Phenomena, Field Theory and Renormalisation Group (T-M Yan & S C-C Lin)Field Theories of Surfaces and Interfaces (S C-C Lin)Spiral Self-Avoiding Walks (K Y Lin)Critical Phenomena on Fractal Lattices (Doochul Kim)Percolation and Phase Transitions: Towards a Unified Theory of Phase Transitions (C-K Hu)Real Space Approach to Disordered Systems (S-Y Wu)Three Routes to Chaos: Period Doubling, Intermittency and Quasiperiodicity (B Hu)Ordering Kinetics in Phase Transitions (K Kawasaki)A Design of Analog Circuit for Studies of Transitions to Chaos in a RF-Driven Josephson Junction (J C Huang et al)Potts Model and Graph Theory (F Y Wu)Number and Size of Convex Polygons on the Square Lattice (K Y Lin)Exactly Solvable Models in Statistical Mechanics and Automorphisms of Algebraic Varieties (J-M Maillard)The Application of the Transfer Matrix Method to the Phase Transition of Ising Model (T Oguchi et al)Coherent-Anomaly Method in Critical Phenomena (M Katori & M Suzuki)Monte Carlo Study of Percolation Transitions and Phase Transitions in Interacting Systems (C-K Hu & K-S Mak)Anisotropic Surface Tension and Equilibrium Crystal Shapes (R K P Zia)The Structure Making and Breaking Effects of Ion Solvation in Water (J-L Lin & C-Y Mou)Ordering Processes in Two-Dimensional Quantum Spin Systems (S=1/2) (S Miyashita)Phase Transitions in Arrays of Josephson Junctions (M Y Choi) Readership: Theoretical physicists and condensed matter physicists.
This volume contains contributions to the workshop, which was largely focused on the strong coupling gauge theories in search for theories beyond the standard model, particularly, the LHC experiments and lattice studies of conformal fixed point. The main topics include walking technicolor and the role of conformality in view of the 125 GeV Higgs as a light composite Higgs (technidilaton, and other composite Higgs, etc.). Nonperturbative studies like lattice simulations and stringy/holographic approaches are extensively discussed in close relation to the phenomenological studies.After the discovery of 125 GeV Higgs at LHC, the central issue of particle physics is now to reveal the dynamical origin of the Higgs itself. One of the possibilities would be the composite Higgs based on the strong coupling gauge theory in the TeV region, such as the technidilaton predicted in walking technicolor with infrared conformality. The volume contains, among others, many of the latest important reports on walking technicolor and related subjects in the general context of conformality, in a way of direct relevance to the LHC phenomenology as well as the lattice studies. It is very timely to study full theoretical implications in the exciting era when the LHC is vigorously working. This volume is of great importance for that purpose.Speakers of 40 talks (plus posters) include K-I Aoki, Y Aoki, K Bamba, E Bennett, R S Chivukula, H Georgi, A Hasenfratz, D-K Hong, K Itoh, D Elander, G Fleming, H Fukano, Y Iwasaki, M Jarvinen, D Kadoh, S Kim, R Kitano, K-I Kondo, J Kuti, D Lin, N Maru, H Matsufuru, S Matsuzaki, K-I Nagai, C Nonaka, H Ohki, E Pallante, M Rho, E Rinaldi, F Sannino, D Schaich, A Shibata, R E Shrock, E H Simmons, K Tuominen, C H Wong, N Yamada, M J S Yang, and K Yamawaki.
The twentieth Johns Hopkins Workshop on current problems in particle theory took place in Heidelberg. The topic of the workshop was chosen in view of the phantastic success enjoyed by the standard model of electroweak and strong interactions.Until today, no significant deviations from the predictions of the standard model have been observed. However, precision tests have been dominantly performed in the high-energy domain, where the QCD coupling constant is small enough to allow for a perturbative treatment of the strong interaction. It is therefore very important to consider also the low-energy region for which non-perturbative aspects of QCD come into play.
The investigation of the properties of nonlinear systems is one of the fast deve loping areas of physics. In condensed matter physics this 'terra incognita' is approached from various starting points such as phase transitions and renormali zation group theory, nonlinear models, statistical mechanics and others. The study of the mutual interrelations of these disciplines is important in developing uni fying methods and models towards a better understanding of nonlinear systems. The present book collects the lectures and seminars delivered at the workshop on "Statics and Dynamics of Nonlinear Systems" held at the Centre for SCientific Culture "Ettore Majorana·" in Erice;· Italy, July 1 to 11, 1983, in the framework of the International School of Materials Science and Technology. Experts and young researchers came together to discuss nonlinear phenomena in condensed matter physics. The book is divided into five parts, each part containing a few general artic les introducing the subject, followed by related specialized papers. The first part deals with basic properties of nonlinear systems including an introduction to the general theoretical methods. Contrfbutions to the nonlinear aspects of phase transitions are collected in the second part. In the third part properties of incommensurate systems are discussed. Here, competing interactions lead to charge-density waves, soliton lattices and other complex structures. Another point of special interest, illustrated in the fourth part, is the 'chaotic' be havior of various systems such as Josephson junctions and discrete lattices.