Download Free Exact Algorithm And Meta Heuristic Approaches For Scheduling Problems Book in PDF and EPUB Free Download. You can read online Exact Algorithm And Meta Heuristic Approaches For Scheduling Problems and write the review.

During the past decades scheduling has been among the most studied op- mization problemsanditisstillanactiveareaofresearch!Schedulingappears in many areas of science, engineering and industry and takes di?erent forms depending on the restrictions and optimization criteria of the operating en- ronments [8]. For instance, in optimization and computer science, scheduling has been de?ned as “the allocation of tasks to resources over time in order to achieve optimality in one or more objective criteria in an e?cient way” and in production as “production schedule, i. e. , the planning of the production or the sequence of operations according to which jobs pass through machines and is optimal with respect to certain optimization criteria. ” Although there is a standardized form of stating any scheduling problem, namely “e?cient allocation ofn jobs onm machines –which can process no more than one activity at a time– with the objective to optimize some - jective function of the job completion times”, scheduling is in fact a family of problems. Indeed, several parameters intervene in the problem de?nition: (a) job characteristics (preemptive or not, precedence constraints, release dates, etc. ); (b) resource environment (single vs. parallel machines, un- lated machines, identical or uniform machines, etc. ); (c) optimization criteria (minimize total tardiness, the number of late jobs, makespan, ?owtime, etc. ; maximize resource utilization, etc. ); and, (d) scheduling environment (static vs. dynamic,intheformerthenumberofjobstobeconsideredandtheirready times are available while in the later the number of jobs and their charact- istics change over time).
During the past decades scheduling has been among the most studied op- mization problemsanditisstillanactiveareaofresearch!Schedulingappears in many areas of science, engineering and industry and takes di?erent forms depending on the restrictions and optimization criteria of the operating en- ronments [8]. For instance, in optimization and computer science, scheduling has been de?ned as “the allocation of tasks to resources over time in order to achieve optimality in one or more objective criteria in an e?cient way” and in production as “production schedule, i. e. , the planning of the production or the sequence of operations according to which jobs pass through machines and is optimal with respect to certain optimization criteria. ” Although there is a standardized form of stating any scheduling problem, namely “e?cient allocation ofn jobs onm machines –which can process no more than one activity at a time– with the objective to optimize some - jective function of the job completion times”, scheduling is in fact a family of problems. Indeed, several parameters intervene in the problem de?nition: (a) job characteristics (preemptive or not, precedence constraints, release dates, etc. ); (b) resource environment (single vs. parallel machines, un- lated machines, identical or uniform machines, etc. ); (c) optimization criteria (minimize total tardiness, the number of late jobs, makespan, ?owtime, etc. ; maximize resource utilization, etc. ); and, (d) scheduling environment (static vs. dynamic,intheformerthenumberofjobstobeconsideredandtheirready times are available while in the later the number of jobs and their charact- istics change over time).
A unified view of metaheuristics This book provides a complete background on metaheuristics and shows readers how to design and implement efficient algorithms to solve complex optimization problems across a diverse range of applications, from networking and bioinformatics to engineering design, routing, and scheduling. It presents the main design questions for all families of metaheuristics and clearly illustrates how to implement the algorithms under a software framework to reuse both the design and code. Throughout the book, the key search components of metaheuristics are considered as a toolbox for: Designing efficient metaheuristics (e.g. local search, tabu search, simulated annealing, evolutionary algorithms, particle swarm optimization, scatter search, ant colonies, bee colonies, artificial immune systems) for optimization problems Designing efficient metaheuristics for multi-objective optimization problems Designing hybrid, parallel, and distributed metaheuristics Implementing metaheuristics on sequential and parallel machines Using many case studies and treating design and implementation independently, this book gives readers the skills necessary to solve large-scale optimization problems quickly and efficiently. It is a valuable reference for practicing engineers and researchers from diverse areas dealing with optimization or machine learning; and graduate students in computer science, operations research, control, engineering, business and management, and applied mathematics.
Finding exact solutions to many combinatorial optimization problems in busi ness, engineering, and science still poses a real challenge, despite the impact of recent advances in mathematical programming and computer technology. New fields of applications, such as computational biology, electronic commerce, and supply chain management, bring new challenges and needs for algorithms and optimization techniques. Metaheuristics are master procedures that guide and modify the operations of subordinate heuristics, to produce improved approx imate solutions to hard optimization problems with respect to more simple algorithms. They also provide fast and robust tools, producing high-quality solutions in reasonable computation times. The field of metaheuristics has been fast evolving in recent years. Tech niques such as simulated annealing, tabu search, genetic algorithms, scatter search, greedy randomized adaptive search, variable neighborhood search, ant systems, and their hybrids are currently among the most efficient and robust optimization strategies to find high-quality solutions to many real-life optimiza tion problems. A very large nmnber of successful applications of metaheuristics are reported in the literature and spread throughout many books, journals, and conference proceedings. A series of international conferences entirely devoted to the theory, applications, and computational developments in metaheuristics has been attracting an increasing number of participants, from universities and the industry.
This title presents a large variety of models and algorithms dedicated to the resource-constrained project scheduling problem (RCPSP), which aims at scheduling at minimal duration a set of activities subject to precedence constraints and limited resource availabilities. In the first part, the standard variant of RCPSP is presented and analyzed as a combinatorial optimization problem. Constraint programming and integer linear programming formulations are given. Relaxations based on these formulations and also on related scheduling problems are presented. Exact methods and heuristics are surveyed. Computational experiments, aiming at providing an empirical insight on the difficulty of the problem, are provided. The second part of the book focuses on several other variants of the RCPSP and on their solution methods. Each variant takes account of real-life characteristics which are not considered in the standard version, such as possible interruptions of activities, production and consumption of resources, cost-based approaches and uncertainty considerations. The last part presents industrial case studies where the RCPSP plays a central part. Applications are presented in various domains such as assembly shop and rolling ingots production scheduling, project management in information technology companies and instruction scheduling for VLIW processor architectures.
Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimizations comprises a carefully refereed selection of extended versions of the best papers presented at the Second Meta-Heuristics Conference (MIC 97). The selected articles describe the most recent developments in theory and applications of meta-heuristics, heuristics for specific problems, and comparative case studies. The book is divided into six parts, grouped mainly by the techniques considered. The extensive first part with twelve papers covers tabu search and its application to a great variety of well-known combinatorial optimization problems (including the resource-constrained project scheduling problem and vehicle routing problems). In the second part we find one paper where tabu search and simulated annealing are investigated comparatively and two papers which consider hybrid methods combining tabu search with genetic algorithms. The third part has four papers on genetic and evolutionary algorithms. Part four arrives at a new paradigm within meta-heuristics. The fifth part studies the behavior of parallel local search algorithms mainly from a tabu search perspective. The final part examines a great variety of additional meta-heuristics topics, including neural networks and variable neighbourhood search as well as guided local search. Furthermore, the integration of meta-heuristics with the branch-and-bound paradigm is investigated.
Evolutionary algorithms are becoming increasingly attractive across various disciplines, such as operations research, computer science, industrial engineering, electrical engineering, social science and economics. Introduction to Evolutionary Algorithms presents an insightful, comprehensive, and up-to-date treatment of evolutionary algorithms. It covers such hot topics as: • genetic algorithms, • differential evolution, • swarm intelligence, and • artificial immune systems. The reader is introduced to a range of applications, as Introduction to Evolutionary Algorithms demonstrates how to model real world problems, how to encode and decode individuals, and how to design effective search operators according to the chromosome structures with examples of constraint optimization, multiobjective optimization, combinatorial optimization, and supervised/unsupervised learning. This emphasis on practical applications will benefit all students, whether they choose to continue their academic career or to enter a particular industry. Introduction to Evolutionary Algorithms is intended as a textbook or self-study material for both advanced undergraduates and graduate students. Additional features such as recommended further reading and ideas for research projects combine to form an accessible and interesting pedagogical approach to this widely used discipline.
Network models are critical tools in business, management, science and industry. “Network Models and Optimization” presents an insightful, comprehensive, and up-to-date treatment of multiple objective genetic algorithms to network optimization problems in many disciplines, such as engineering, computer science, operations research, transportation, telecommunication, and manufacturing. The book extensively covers algorithms and applications, including shortest path problems, minimum cost flow problems, maximum flow problems, minimum spanning tree problems, traveling salesman and postman problems, location-allocation problems, project scheduling problems, multistage-based scheduling problems, logistics network problems, communication network problem, and network models in assembly line balancing problems, and airline fleet assignment problems. The book can be used both as a student textbook and as a professional reference for practitioners who use network optimization methods to model and solve problems.
The main goal of this book is to provide a state of the art of hybrid metaheuristics. The book provides a complete background that enables readers to design and implement hybrid metaheuristics to solve complex optimization problems (continuous/discrete, mono-objective/multi-objective, optimization under uncertainty) in a diverse range of application domains. Readers learn to solve large scale problems quickly and efficiently combining metaheuristics with complementary metaheuristics, mathematical programming, constraint programming and machine learning. Numerous real-world examples of problems and solutions demonstrate how hybrid metaheuristics are applied in such fields as networks, logistics and transportation, bio-medical, engineering design, scheduling.
Heuristics are strategies using readily accessible, loosely applicable information to control problem solving. Algorithms, for example, are a type of heuristic. By contrast, Metaheuristics are methods used to design Heuristics and may coordinate the usage of several Heuristics toward the formulation of a single method. GRASP (Greedy Randomized Adaptive Search Procedures) is an example of a Metaheuristic. To the layman, heuristics may be thought of as ‘rules of thumb’ but despite its imprecision, heuristics is a very rich field that refers to experience-based techniques for problem-solving, learning, and discovery. Any given solution/heuristic is not guaranteed to be optimal but heuristic methodologies are used to speed up the process of finding satisfactory solutions where optimal solutions are impractical. The introduction to this Handbook provides an overview of the history of Heuristics along with main issues regarding the methodologies covered. This is followed by Chapters containing various examples of local searches, search strategies and Metaheuristics, leading to an analyses of Heuristics and search algorithms. The reference concludes with numerous illustrations of the highly applicable nature and implementation of Heuristics in our daily life. Each chapter of this work includes an abstract/introduction with a short description of the methodology. Key words are also necessary as part of top-matter to each chapter to enable maximum search engine optimization. Next, chapters will include discussion of the adaptation of this methodology to solve a difficult optimization problem, and experiments on a set of representative problems.