Download Free Evolvable Systems Book in PDF and EPUB Free Download. You can read online Evolvable Systems and write the review.

This book constitutes the strictly refereed post-conference proceedings recording the scientific progress achieved at the First International Conference on Evolvable Systems: From Biology to Hardware, ICES'96, held in Tsukuba, Japan, in October 1996. The volume presents 33 revised full papers including several invited contributions surveying the state of the art in this emerging area of research and development. The volume is divided into topical sections on evolware, cellular systems, engineering applications of evolvable hardware systems, evolutionary robotics, innovative architectures, evolvable systems, evolvable hardware, and genetic programming.
All living things are remarkably complex, yet their DNA is unstable, undergoing countless random mutations over generations. Despite this instability, most animals do not grow two heads or die, plants continue to thrive, and bacteria continue to divide. Robustness and Evolvability in Living Systems tackles this perplexing paradox. The book explores why genetic changes do not cause organisms to fail catastrophically and how evolution shapes organisms' robustness. Andreas Wagner looks at this problem from the ground up, starting with the alphabet of DNA, the genetic code, RNA, and protein molecules, moving on to genetic networks and embryonic development, and working his way up to whole organisms. He then develops an evolutionary explanation for robustness. Wagner shows how evolution by natural selection preferentially finds and favors robust solutions to the problems organisms face in surviving and reproducing. Such robustness, he argues, also enhances the potential for future evolutionary innovation. Wagner also argues that robustness has less to do with organisms having plenty of spare parts (the redundancy theory that has been popular) and more to do with the reality that mutations can change organisms in ways that do not substantively affect their fitness. Unparalleled in its field, this book offers the most detailed analysis available of all facets of robustness within organisms. It will appeal not only to biologists but also to engineers interested in the design of robust systems and to social scientists concerned with robustness in human communities and populations.
This book constitutes the refereed proceedings of the 7th International Conference on Evolvable Systems, ICES 2007, held in Wuhan, China, in September 2007. The 41 revised full papers collected in this volume are organized in topical sections on digital hardware evolution, analog hardware evolution, bio-inspired systems, mechanical hardware evolution, evolutionary design, evolutionary algorithms in hardware design, and hardware implementation of evolutionary algorithms.
This book constitutes the refereed proceedings of the 6th International Conference on Evolvable Systems, ICES 2005, held in Sitges, Spain in September 2005. The 21 revised full papers presented were carefully reviewed and selected. The papers are organized in topical sections on fault tolerance and recovery, platforms for evolving digital systems, evolution of analog circuits, evolutionary robotics, evolutionary hardware design methodologies, bio-inspired architectures, and applications.
This book constitutes the refereed proceedings of the Second International Conference on Evolvable Systems: From Biology to Hardware, ICES '98, held in Lausanne, Switzerland in September 1998. The 38 revised papers presented were carefully selected for inclusion in the book from numerous submissions. The papers are organized in topical sections on evaluation of digital systems, evolution of analog systems, embryonic electronics, bio-inspired systems, artifical neural networks, adaptive robotics, adaptive hardware platforms, and molecular computing.
The use of evolution for creative problem solving is one of the most exciting and potentially significant areas in computer science today. Evolutionary computation is a way of solving problems, or generating designs, using mechanisms derived from natural evolution. This book concentrates on applying important ideas in evolutionary computation to creative areas, such as art, music, architecture, and design. It shows how human interaction, new representations, and approaches such as open-ended evolution can extend the capabilities of evolutionary computation from optimization of existing solutions to innovation and the generation of entirely new and original solutions. This book takes a fresh look at creativity, exploring what it is and how the actions of evolution can resemble it. Examples of novel evolved solutions are presented in a variety of creative disciplines. The editors have compiled contributions by leading researchers in each discipline. If you are a savvy and curious computing professional, a computer-literate artist, musician or designer, or a specialist in evolutionary computation and its applications, you will find this a fascinating survey of the most interesting work being done in the area today.* Explores the use of evolutionary computation to generate novel creations including contemporary melodies, photo-realistic faces, jazz music in collaboration with a human composer, architectural designs, working electronic circuits, novel aircraft maneuvers, two- and three-dimensional art, and original proteins.* Presents resulting designs in black-and-white and color illustrations.* Includes a twin-format audio/CD-ROM with evolved music and hands-on activities for the reader, including evolved images, animations, and source-code related to the text.* Describes in full the methods used so that readers with sufficient skill and interest can replicate the work and extend it.* Is written for a general computer science audience, providing coherent and unified treatment across multiple disciplines.
This book constitutes the refereed proceedings of the Third International Conference on Evolvable Systems: From Biology to Hardware, ICES 2000, held in Edinburgh, Scotland, UK, in April 2000. The 27 revised full papers presented were carefully reviewed and selected for inclusion in the proceedings. Among the topics covered are evaluation of digital systems, evolution of analog systems, embryonic electronics, bio-inspired systems, artificial neural networks, adaptive robotics, adaptive hardware platforms, molecular computing, reconfigurable systems, immune systems, and self-repair.
Biology has inspired electronics from the very beginning: the machines that we now call computers are deeply rooted in biological metaphors. Pioneers such as Alan Turing and John von Neumann openly declared their aim of creating arti?cial machines that could mimic some of the behaviors exhibited by natural organisms. Unfortunately, technology had not progressed enough to allow them to put their ideas into practice. The 1990s saw the introduction of programmable devices, both digital (FP- GAs) and analogue (FPAAs). These devices, by allowing the functionality and the structure of electronic devices to be easily altered, enabled researchers to endow circuits with some of the same versatility exhibited by biological entities and sparked a renaissance in the ?eld of bio-inspired electronics with the birth of what is generally known as evolvable hardware. Eversince,the?eldhasprogressedalongwiththetechnologicalimprovements and has expanded to take into account many di?erent biological processes, from evolution to learning, from development to healing. Of course, the application of these processes to electronic devices is not always straightforward (to say the least!), but rather than being discouraged, researchers in the community have shown remarkable ingenuity, as demostrated by the variety of approaches presented at this conference and included in these proceedings.
This book constitutes the refereed proceedings of the Third International Conference on Evolvable Systems: From Biology to Hardware, ICES 2000, held in Edinburgh, Scotland, UK, in April 2000. The 27 revised full papers presented were carefully reviewed and selected for inclusion in the proceedings. Among the topics covered are evaluation of digital systems, evolution of analog systems, embryonic electronics, bio-inspired systems, artificial neural networks, adaptive robotics, adaptive hardware platforms, molecular computing, reconfigurable systems, immune systems, and self-repair.
The idea of evolving machines, whose origins can be traced to the cybernetics movementofthe1940sand1950s,hasrecentlyresurgedintheformofthenascent ?eld of bio-inspired systems and evolvable hardware. The inaugural workshop, Towards Evolvable Hardware, took place in Lausanne in October 1995, followed by the First International Conference on Evolvable Systems: From Biology to Hardware (ICES), held in Tsukuba, Japan in October 1996. The second ICES conference was held in Lausanne in September 1998, with the third and fourth being held in Edinburgh, April 2000 and Tokyo, October 2001 respectively. This has become the leading conference in the ?eld of evolvable systems and the 2003 conference promised to be at least as good as, if not better than, the four that preceeded it. The ?fth international conference was built on the success of its predec- sors, aiming at presenting the latest developments in the ?eld. In addition, it brought together researchers who use biologically inspired concepts to imp- ment real systems in arti?cial intelligence, arti?cial life, robotics, VLSI design and related domains. We would say that this ?fth conference followed on from the previous four in that it consisted of a number of high-quality interesting thought-provoking papers.