Download Free Evolvability Environments Embodiment Emergence In Robotics Book in PDF and EPUB Free Download. You can read online Evolvability Environments Embodiment Emergence In Robotics and write the review.

Embodied and evolving systems — biological or robotic — are interacting networks of structure, function, information, and behavior. Understanding these complex systems is the goal of the research presented in this book. We address different questions and hypotheses about four essential topics in complex systems: evolvability, environments, embodiment, and emergence. Using a variety of approaches, we provide different perspectives on an overarching, unifying question: How can embodied and evolutionary robotics illuminate (1) principles underlying biological evolving systems and (2) general analytical frameworks for studying embodied evolving systems? The answer — model biological processes to operate, develop, and evolve situated, embodied robots.
Embodied and evolving systems -- biological or robotic -- are interacting networks of structure, function, information, and behavior. Understanding these complex systems is the goal of the research presented in this book. We address different questions and hypotheses about four essential topics in complex systems: evolvability, environments, embodiment, and emergence. Using a variety of approaches, we provide different perspectives on an overarching, unifying question: How can embodied and evolutionary robotics illuminate (1) principles underlying biological evolving systems and (2) general analytical frameworks for studying embodied evolving systems? The answer -- model biological processes to operate, develop, and evolve situated, embodied robots.
An overview of the basic concepts and methodologies of evolutionary robotics, which views robots as autonomous artificial organisms that develop their own skills in close interaction with the environment and without human intervention.
Hopping, climbing and swimming robots, nano-size neural networks, motorless walkers, slime mould and chemical brains - "Artificial Life Models in Hardware" offers unique designs and prototypes of life-like creatures in conventional hardware and hybrid bio-silicon systems. Ideas and implementations of living phenomena in non-living substrates cast a colourful picture of state-of-art advances in hardware models of artificial life.
The Springer Handbook for Computational Intelligence is the first book covering the basics, the state-of-the-art and important applications of the dynamic and rapidly expanding discipline of computational intelligence. This comprehensive handbook makes readers familiar with a broad spectrum of approaches to solve various problems in science and technology. Possible approaches include, for example, those being inspired by biology, living organisms and animate systems. Content is organized in seven parts: foundations; fuzzy logic; rough sets; evolutionary computation; neural networks; swarm intelligence and hybrid computational intelligence systems. Each Part is supervised by its own Part Editor(s) so that high-quality content as well as completeness are assured.
This field of research examines how embodied and situated agents, such as robots, evolve language and thus communicate with each other. This book is a comprehensive survey of the research in this emerging field. The contributions explain the theoretical and methodological foundations of the field, and then illustrate the scientific and technological potentials and promising research directions. The book also provides descriptions of research experiments and related open software and hardware tools, allowing the reader to gain a practical knowledge of the topic. The book will be of interest to scientists and undergraduate and graduate students in the areas of cognition, artificial life, artificial intelligence and linguistics.
Even before the deep learning revolution, the landscape of artificial intelligence (AI) was already changing drastically in the 90s. Embodied intelligence, it was proposed, must play a crucial role in the design of intelligent machines. This new wave was inspired by what is today known as Embodied and Enactive Cognitive Science or E-Cognition, which considers that cognitive activity does not reduce to the intellectual capacities of agents being able to represent their environments. E-cognition set AI and robotics in a new direction, in which intelligent machines are required to interact with the environment, and where this interaction does not reduce to explicit representations or prespecified algorithms. These ideas revolutionized the way we think about intelligent machines and cognition, but these theoretical advances are only partially reflected in modern approaches to AI and machine learning (ML). Despite deeply impressive achievements, AI/ML still struggles to recapitulate the kinds of intelligence we find in natural systems, whether we are considering individual insects (e.g. simultaneous localization and mapping), or swarm behaviour (e.g. forum sensing and ensemble inferences), and especially the kinds of flexibility and high-level reasoning characteristic of human cognition.
Originating from a Dagstuhl seminar, the collection of papers presented in this book constitutes on the one hand a representative state-of-the-art survey of embodied artificial intelligence, and on the other hand the papers identify the important research trends and directions in the field. Following an introductory overview, the 23 papers are organized into topical sections on - philosophical and conceptual issues - information, dynamics, and morphology - principles of embodiment for real-world applications - developmental approaches - artificial evolution and self-reconfiguration