Download Free Evolutionary Swarm Robotics Book in PDF and EPUB Free Download. You can read online Evolutionary Swarm Robotics and write the review.

In this book the use of ER techniques for the design of self-organising group behaviours, for both simulated and real robots is introduced. The book tries to mediate between two apparently opposed perspectives: engineering and cognitive science. The experiments presented in the book and the results obtained contribute to the assessment of ER not only as a design tool, but also as a methodology for modelling and understanding intelligent adaptive behaviours.
This book provides an introduction to Swarm Robotics, which is the application of methods from swarm intelligence to robotics. It goes on to present methods that allow readers to understand how to design large-scale robot systems by going through many example scenarios on topics such as aggregation, coordinated motion (flocking), task allocation, self-assembly, collective construction, and environmental monitoring. The author explains the methodology behind building multiple, simple robots and how the complexity emerges from the multiple interactions between these robots such that they are able to solve difficult tasks. The book can be used as a short textbook for specialized courses or as an introduction to Swarm Robotics for graduate students, researchers, and professionals who want a concise introduction to the field.
Today, autonomous robots are used in a rather limited range of applications such as exploration of inaccessible locations, cleaning floors, mowing lawns etc. However, ongoing hardware improvements (and human fantasy) steadily reveal new robotic applications of significantly higher sophistication. For such applications, the crucial bottleneck in the engineering process tends to shift from physical boundaries to controller generation. As an attempt to automatize this process, Evolutionary Robotics has successfully been used to generate robotic controllers of various types. However, a major challenge of the field remains the evolution of truly complex behavior. Furthermore, automatically created controllers often lack analyzability which makes them useless for safety-critical applications. In this book, a simple controller model based on Finite State Machines is proposed which allows a straightforward analysis of evolved behaviors. To increase the model's evolvability, a procedure is introduced which, by adapting the genotype-phenotype mapping at runtime, efficiently traverses both the behavioral search space as well as (recursively) the search space of genotype-phenotype mappings. Furthermore, a data-driven mathematical framework is proposed which can be used to calculate the expected success of evolution in complex environments.
This book constitutes the thoroughly refereed post-proceedings of the 2nd SAB 2006 International Workshop on Swarm Robotics held in Rome, Italy in September/October 2006 as a satellite event of SAB 2006, the 9th Conference on Simulation of Adaptive Behavior. The 14 revised full papers are organized in topical sections on algorithms, modeling and analysis, hardware, and evolutionary approaches.
An authoritative overview of current research in this exciting interdisciplinary field. Evolutionary robotics (ER) aims to apply evolutionary computation techniques to the design of both real and simulated autonomous robots. The Horizons of Evolutionary Robotics offers an authoritative overview of this rapidly developing field, presenting state-of-the-art research by leading scholars. The result is a lively, expansive survey that will be of interest to computer scientists, robotics engineers, neuroscientists, and philosophers. The contributors discuss incorporating principles from neuroscience into ER; dynamical analysis of evolved agents; constructing appropriate evolutionary pathways; spatial cognition; the coevolution of robot brains and bodies; group behavior; the evolution of communication; translating evolved behavior into design principles; the development of an evolutionary robotics–based methodology for shedding light on neural processes; an incremental approach to complex tasks; and the notion of “mindless intelligence”—complex processes from immune systems to social networks—as a way forward for artificial intelligence. Contributors Christos Ampatzis, Randall D. Beer, Josh Bongard, Joachim de Greeff, Ezequiel A. Di Paolo, Marco Dorigo, Dario Floreano, Inman Harvey, Sabine Hauert, Phil Husbands, Laurent Keller, Michail Maniadakis, Orazio Miglino, Sara Mitri, Renan Moioli, Stefano Nolfi, Michael O'Shea, Rainer W. Paine, Andy Philippides, Jordan B. Pollack, Michela Ponticorvo, Yoon-Sik Shim, Jun Tani, Vito Trianni, Elio Tuci, Patricia A. Vargas, Eric D. Vaughan
This book is a delight for academics, researchers and professionals working in evolutionary and swarm computing, computational intelligence, machine learning and engineering design, as well as search and optimization in general. It provides an introduction to the design and development of a number of popular and recent swarm and evolutionary algorithms with a focus on their applications in engineering problems in diverse domains. The topics discussed include particle swarm optimization, the artificial bee colony algorithm, Spider Monkey optimization algorithm, genetic algorithms, constrained multi-objective evolutionary algorithms, genetic programming, and evolutionary fuzzy systems. A friendly and informative treatment of the topics makes this book an ideal reference for beginners and those with experience alike.
An overview of the basic concepts and methodologies of evolutionary robotics, which views robots as autonomous artificial organisms that develop their own skills in close interaction with the environment and without human intervention.
Evolutionary Algorithms (EAs) now provide mature optimization tools that have successfully been applied to many problems, from designing antennas to complete robots, and provided many human-competitive results. In robotics, the integration of EAs within the engineer’s toolbox made tremendous progress in the last 20 years and proposes new methods to address challenging problems in various setups: modular robotics, swarm robotics, robotics with non-conventional mechanics (e.g. high redundancy, dynamic motion, multi-modality), etc. This book takes its roots in the workshop on "New Horizons in Evolutionary Design of Robots" that brought together researchers from Computer Science and Robotics during the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS-2009) in Saint Louis (USA). This book features extended contributions from the workshop, thus providing various examples of current problems and applications, with a special emphasis on the link between Computer Science and Robotics. It also provides a comprehensive and up-to-date introduction to Evolutionary Robotics after 20 years of maturation as well as thoughts and considerations from several major actors in the field. This book offers a comprehensive introduction to the current trends and challenges in Evolutionary Robotics for the next decade.
The book’s contributing authors are among the top researchers in swarm intelligence. The book is intended to provide an overview of the subject to novices, and to offer researchers an update on interesting recent developments. Introductory chapters deal with the biological foundations, optimization, swarm robotics, and applications in new-generation telecommunication networks, while the second part contains chapters on more specific topics of swarm intelligence research.
In nature, it is possible to observe a cooperative behaviour in all animals, since, according to Charles Darwin’s theory, every being, from ants to human beings, form groups in which most individuals work for the common good. However, although study of dozens of social species has been done for a century, details of how and why cooperation evolved remain to be worked out. Actually, cooperative behaviour has been studied from different points of view. Swarm robotics is a new approach that emerged on the field of artificial swarm intelligence, as well as the biological studies of insects (i.e. ants and other fields in nature) which coordinate their actions to accomplish tasks that are beyond the capabilities of a single individual. In particular, swarm robotics is focused on the coordination of decentralised, self-organised multi-robot systems in order to describe such a collective behaviour as a consequence of local interactions with one another and with their environment. This book has only provided a partial picture of the field of swarm robotics by focusing on practical applications. The global assessment of the contributions contained in this book is reasonably positive since they highlighted that it is necessary to adapt and remodel biological strategies to cope with the added complexity and problems that arise when robot individuals are considered.