Download Free Evolutionary Games And The Replicator Dynamics Book in PDF and EPUB Free Download. You can read online Evolutionary Games And The Replicator Dynamics and write the review.

Every form of behaviour is shaped by trial and error. Such stepwise adaptation can occur through individual learning or through natural selection, the basis of evolution. Since the work of Maynard Smith and others, it has been realised how game theory can model this process. Evolutionary game theory replaces the static solutions of classical game theory by a dynamical approach centred not on the concept of rational players but on the population dynamics of behavioural programmes. In this book the authors investigate the nonlinear dynamics of the self-regulation of social and economic behaviour, and of the closely related interactions between species in ecological communities. Replicator equations describe how successful strategies spread and thereby create new conditions which can alter the basis of their success, i.e. to enable us to understand the strategic and genetic foundations of the endless chronicle of invasions and extinctions which punctuate evolution. In short, evolutionary game theory describes when to escalate a conflict, how to elicit cooperation, why to expect a balance of the sexes, and how to understand natural selection in mathematical terms.
The author examines the interplay between evolutionary game theory and the equilibrium selection problem in noncooperative games. Evolutionary game theory is one of the most active and rapidly growing areas of research in economics. Unlike traditional game theory models, which assume that all players are fully rational and have complete knowledge of details of the game, evolutionary models assume that people choose their strategies through a trial-and-error learning process in which they gradually discover that some strategies work better than others. In games that are repeated many times, low-payoff strategies tend to be weeded out, and an equilibrium may emerge. Larry Samuelson has been one of the main contributors to the evolutionary game theory literature. In Evolutionary Games and Equilibrium Selection, he examines the interplay between evolutionary game theory and the equilibrium selection problem in noncooperative games. After providing an overview of the basic issues of game theory and a presentation of the basic models, the book addresses evolutionary stability, the dynamics of sample paths, the ultimatum game, drift, noise, backward and forward induction, and strict Nash equilibria.
Evolutionary game theory studies the behaviour of large populations of strategically interacting agents & is used by economists to predict in settings where traditional assumptions about the rationality of agents & knowledge may be inapplicable.
This Element introduces the replicator dynamics for symmetric and asymmetric games where the strategy sets are metric spaces. Under this hypothesis the replicator dynamics evolves in a Banach space of finite signed measures. The authors provide a general framework to study the stability of the replicator dynamics for evolutionary games in this Banach space. This allows them to establish a relation between Nash equilibria and the stability of the replicator for normal a form games applicable to oligopoly models, theory of international trade, public good models, the tragedy of commons, and War of attrition game among others. They also provide conditions to approximate the replicator dynamics on a space of measures by means of a finite-dimensional dynamical system and a sequence of measure-valued Markov processes.
Over the last 25 years, evolutionary game theory has grown with theoretical contributions from the disciplines of mathematics, economics, computer science and biology. It is now ripe for applications. In this book, Daniel Friedman---an economist trained in mathematics---and Barry Sinervo---a biologist trained in mathematics---offer the first unified account of evolutionary game theory aimed at applied researchers. They show how to use a single set of tools to build useful models for three different worlds: the natural world studied by biologists; the social world studied by anthropologists, economists, political scientists and others; and the virtual world built by computer scientists and engineers. The first six chapters offer an accessible introduction to core concepts of evolutionary game theory. These include fitness, replicator dynamics, sexual dynamics, memes and genes, single and multiple population games, Nash equilibrium and evolutionarily stable states, noisy best response and other adaptive processes, the Price equation, and cellular automata. The material connects evolutionary game theory with classic population genetic models, and also with classical game theory. Notably, these chapters also show how to estimate payoff and choice parameters from the data. The last eight chapters present exemplary game theory applications. These include a new coevolutionary predator-prey learning model extending rock-paper-scissors; models that use human subject laboratory data to estimate learning dynamics; new approaches to plastic strategies and life cycle strategies, including estimates for male elephant seals; a comparison of machine learning techniques for preserving diversity to those seen in the natural world; analyses of congestion in traffic networks (either internet or highways) and the “price of anarchy”; environmental and trade policy analysis based on evolutionary games; the evolution of cooperation; and speciation. As an aid for instruction, a web site provides downloadable computational tools written in the R programming language, Matlab, Mathematica and Excel.
Introduces current evolutionary game theory--where ideas from evolutionary biology and rationalistic economics meet--emphasizing the links between static and dynamic approaches and noncooperative game theory. This text introduces current evolutionary game theory--where ideas from evolutionary biology and rationalistic economics meet--emphasizing the links between static and dynamic approaches and noncooperative game theory. Much of the text is devoted to the key concepts of evolutionary stability and replicator dynamics. The former highlights the role of mutations and the latter the mechanisms of selection. Moreover, set-valued static and dynamic stability concepts, as well as processes of social evolution, are discussed. Separate background chapters are devoted to noncooperative game theory and the theory of ordinary differential equations. There are examples throughout as well as individual chapter summaries. Because evolutionary game theory is a fast-moving field that is itself branching out and rapidly evolving, Jörgen Weibull has judiciously focused on clarifying and explaining core elements of the theory in an up-to-date, comprehensive, and self-contained treatment. The result is a text for second-year graduate students in economic theory, other social sciences, and evolutionary biology. The book goes beyond filling the gap between texts by Maynard-Smith and Hofbauer and Sigmund that are currently being used in the field. Evolutionary Game Theory will also serve as an introduction for those embarking on research in this area as well as a reference for those already familiar with the field. Weibull provides an overview of the developments that have taken place in this branch of game theory, discusses the mathematical tools needed to understand the area, describes both the motivation and intuition for the concepts involved, and explains why and how it is relevant to economics.
​This book both summarizes the basic theory of evolutionary games and explains their developing applications, giving special attention to the 2-player, 2-strategy game. This game, usually termed a "2×2 game” in the jargon, has been deemed most important because it makes it possible to posit an archetype framework that can be extended to various applications for engineering, the social sciences, and even pure science fields spanning theoretical biology, physics, economics, politics, and information science. The 2×2 game is in fact one of the hottest issues in the field of statistical physics. The book first shows how the fundamental theory of the 2×2 game, based on so-called replicator dynamics, highlights its potential relation with nonlinear dynamical systems. This analytical approach implies that there is a gap between theoretical and reality-based prognoses observed in social systems of humans as well as in those of animal species. The book explains that this perceived gap is the result of an underlying reciprocity mechanism called social viscosity. As a second major point, the book puts a sharp focus on network reciprocity, one of the five fundamental mechanisms for adding social viscosity to a system and one that has been a great concern for study by statistical physicists in the past decade. The book explains how network reciprocity works for emerging cooperation, and readers can clearly understand the existence of substantial mechanics when the term "network reciprocity" is used. In the latter part of the book, readers will find several interesting examples in which evolutionary game theory is applied. One such example is traffic flow analysis. Traffic flow is one of the subjects that fluid dynamics can deal with, although flowing objects do not comprise a pure fluid but, rather, are a set of many particles. Applying the framework of evolutionary games to realistic traffic flows, the book reveals that social dilemma structures lie behind traffic flow.
There are two main approaches towards the phenotypic analysis of frequency dependent natural selection. First, there is the approach of evolutionary game theory, which was introduced in 1973 by John Maynard Smith and George R. Price. In this theory, the dynamical process of natural selection is not modeled explicitly. Instead, the selective forces acting within a population are represented by a fitness function, which is then analysed according to the concept of an evolutionarily stable strategy or ESS. Later on, the static approach of evolutionary game theory has been complemented by a dynamic stability analysis of the replicator equations. Introduced by Peter D. Taylor and Leo B. Jonker in 1978, these equations specify a class of dynamical systems, which provide a simple dynamic description of a selection process. Usually, the investigation of the replicator dynamics centers around a stability analysis of their stationary solutions. Although evolutionary stability and dynamic stability both intend to characterize the long-term outcome of frequency dependent selection, these concepts differ considerably in the 'philosophies' on which they are based. It is therefore not too surprising that they often lead to quite different evolutionary predictions (see, e. g. , Weissing 1983). The present paper intends to illustrate the incongruities between the two approaches towards a phenotypic theory of natural selection. A detailed game theoretical and dynamical analysis is given for a generic class of evolutionary normal form games.
Covering the major topics of evolutionary game theory, Game-Theoretical Models in Biology presents both abstract and practical mathematical models of real biological situations. It discusses the static aspects of game theory in a mathematically rigorous way that is appealing to mathematicians. In addition, the authors explore many applications of game theory to biology, making the text useful to biologists as well. The book describes a wide range of topics in evolutionary games, including matrix games, replicator dynamics, the hawk-dove game, and the prisoner’s dilemma. It covers the evolutionarily stable strategy, a key concept in biological games, and offers in-depth details of the mathematical models. Most chapters illustrate how to use MATLAB® to solve various games. Important biological phenomena, such as the sex ratio of so many species being close to a half, the evolution of cooperative behavior, and the existence of adornments (for example, the peacock’s tail), have been explained using ideas underpinned by game theoretical modeling. Suitable for readers studying and working at the interface of mathematics and the life sciences, this book shows how evolutionary game theory is used in the modeling of these diverse biological phenomena.