Download Free Evolutionary Community Ecology Volume 58 Book in PDF and EPUB Free Download. You can read online Evolutionary Community Ecology Volume 58 and write the review.

Cover -- Title -- Copyright -- Dedication -- Contents -- Acknowledgments -- 1. Ecological Opportunities, Communities, and Evolution -- 2. The Community of Ecological Opportunities -- 3. Evolving in the Community -- 4. New Species for the Community -- 5. Differentiating in the Community -- 6. Moving among Communities -- 7. Which Ways Forward? -- Literature Cited -- Index
Community ecology has undergone a transformation in recent years, from a discipline largely focused on processes occurring within a local area to a discipline encompassing a much richer domain of study, including the linkages between communities separated in space (metacommunity dynamics), niche and neutral theory, the interplay between ecology and evolution (eco-evolutionary dynamics), and the influence of historical and regional processes in shaping patterns of biodiversity. To fully understand these new developments, however, students continue to need a strong foundation in the study of species interactions and how these interactions are assembled into food webs and other ecological networks. This new edition fulfils the book's original aims, both as a much-needed up-to-date and accessible introduction to modern community ecology, and in identifying the important questions that are yet to be answered. This research-driven textbook introduces state-of-the-art community ecology to a new generation of students, adopting reasoned and balanced perspectives on as-yet-unresolved issues. Community Ecology is suitable for advanced undergraduates, graduate students, and researchers seeking a broad, up-to-date coverage of ecological concepts at the community level.
A comprehensive framework for understanding species coexistence Coexistence is the central concept in community ecology, but an understanding of this concept requires that we study the actual mechanisms of species interactions. Coexistence in Ecology examines the major features of these mechanisms for species that coexist at different positions in complex food webs, and derives empirical tests from model predictions. Exploring the various challenges species face, Mark McPeek systematically builds a model food web, beginning with an ecosystem devoid of life and then adding one species at a time. With the introduction of each new species, he evaluates the properties it must possess to invade a community and quantifies the changes in the abundances of other species that result from a successful invasion. McPeek continues this process until he achieves a multitrophic level food web with many species coexisting at each trophic level, from omnivores, mutualists, and pathogens to herbivores, carnivores, and basic plants. He then describes the observational and experimental empirical studies that can test the theoretical predictions resulting from the model analyses. Synthesizing decades of theoretical research in community ecology, Coexistence in Ecology offers new perspectives on how to develop an empirical program of study rooted in the natural histories of species and the mechanisms by which they actually interact with one another.
The evolution of species abundance and diversity; Competitive strategies of resource allocation; Community structure; Outlook.
A plethora of different theories, models, and concepts make up the field of community ecology. Amid this vast body of work, is it possible to build one general theory of ecological communities? What other scientific areas might serve as a guiding framework? As it turns out, the core focus of community ecology—understanding patterns of diversity and composition of biological variants across space and time—is shared by evolutionary biology and its very coherent conceptual framework, population genetics theory. The Theory of Ecological Communities takes this as a starting point to pull together community ecology's various perspectives into a more unified whole. Mark Vellend builds a theory of ecological communities based on four overarching processes: selection among species, drift, dispersal, and speciation. These are analogues of the four central processes in population genetics theory—selection within species, drift, gene flow, and mutation—and together they subsume almost all of the many dozens of more specific models built to describe the dynamics of communities of interacting species. The result is a theory that allows the effects of many low-level processes, such as competition, facilitation, predation, disturbance, stress, succession, colonization, and local extinction to be understood as the underpinnings of high-level processes with widely applicable consequences for ecological communities. Reframing the numerous existing ideas in community ecology, The Theory of Ecological Communities provides a new way for thinking about biological composition and diversity.
Biographic Memoirs: Volume 58 contains short biographies of deceased members of the National Academy of Sciences.
The theme of this volume is to discuss Eco-evolutionary Dynamics. Updates and informs the reader on the latest research findings Written by leading experts in the field Highlights areas for future investigation
This text aims to establish biology as a discipline not just a collection of facts. Life develops students' understanding of biological processes with scholarship, a smooth narrative, experimental contexts, art and effective pedagogy.
Metacommunity ecology links smaller-scale processes that have been the provenance of population and community ecology—such as birth-death processes, species interactions, selection, and stochasticity—with larger-scale issues such as dispersal and habitat heterogeneity. Until now, the field has focused on evaluating the relative importance of distinct processes, with niche-based environmental sorting on one side and neutral-based ecological drift and dispersal limitation on the other. This book moves beyond these artificial categorizations, showing how environmental sorting, dispersal, ecological drift, and other processes influence metacommunity structure simultaneously. Mathew Leibold and Jonathan Chase argue that the relative importance of these processes depends on the characteristics of the organisms, the strengths and types of their interactions, the degree of habitat heterogeneity, the rates of dispersal, and the scale at which the system is observed. Using this synthetic perspective, they explore metacommunity patterns in time and space, including patterns of coexistence, distribution, and diversity. Leibold and Chase demonstrate how these processes and patterns are altered by micro- and macroevolution, traits and phylogenetic relationships, and food web interactions. They then use this scale-explicit perspective to illustrate how metacommunity processes are essential for understanding macroecological and biogeographical patterns as well as ecosystem-level processes. Moving seamlessly across scales and subdisciplines, Metacommunity Ecology is an invaluable reference, one that offers a more integrated approach to ecological patterns and processes.