Download Free Evolutionary Biology Mechanisms And Trends Book in PDF and EPUB Free Download. You can read online Evolutionary Biology Mechanisms And Trends and write the review.

Comprehensively illustrated and written by leading researchers, this invaluable publication features papers from the annual Evolutionary Biology meetings in Marseilles. It includes a description of the life and work of the celebrated biologist J.B.S. Haldane.
Evolutionary biology has witnessed breathtaking advances in recent years. Some of its most exciting insights have come from the crossover of disciplines as varied as paleontology, molecular biology, ecology, and genetics. This book brings together many of today's pioneers in evolutionary biology to describe the latest advances and explain why a cross-disciplinary and integrated approach to research questions is so essential. Contributors discuss the origins of biological diversity, mechanisms of evolutionary change at the molecular and developmental levels, morphology and behavior, and the ecology of adaptive radiations and speciation. They highlight the mutual dependence of organisms and their environments, and reveal the different strategies today's researchers are using in the field and laboratory to explore this interdependence. Peter and Rosemary Grant--renowned for their influential work on Darwin's finches in the Galápagos--provide concise introductions to each section and identify the key questions future research needs to address. In addition to the editors, the contributors are Myra Awodey, Christopher N. Balakrishnan, Rowan D. H. Barrett, May R. Berenbaum, Paul M. Brakefield, Philip J. Currie, Scott V. Edwards, Douglas J. Emlen, Joshua B. Gross, Hopi E. Hoekstra, Richard Hudson, David Jablonski, David T. Johnston, Mathieu Joron, David Kingsley, Andrew H. Knoll, Mimi A. R. Koehl, June Y. Lee, Jonathan B. Losos, Isabel Santos Magalhaes, Albert B. Phillimore, Trevor Price, Dolph Schluter, Ole Seehausen, Clifford J. Tabin, John N. Thompson, and David B. Wake.
This book examines the toxicological and health implications of environmental epigenetics and provides knowledge through an interdisciplinary approach. Included in this volume are chapters outlining various environmental risk factors such as phthalates and dietary components, life states such as pregnancy and ageing, hormonal and metabolic considerations and specific disease risks such as cancer cardiovascular diseases and other non-communicable diseases. Environmental Epigenetics imparts integrative knowledge of the science of epigenetics and the issues raised in environmental epidemiology. This book is intended to serve both as a reference compendium on environmental epigenetics for scientists in academia, industry and laboratories and as a textbook for graduate level environmental health courses. Environmental Epigenetics imparts integrative knowledge of the science of epigenetics and the issues raised in environmental epidemiology. This book is intended to serve both as a reference compendium on environmental epigenetics for scientists in academia, industry and laboratories and as a textbook for graduate level environmental health courses.
This book proposes an important new paradigm for understanding biological evolution. Shapiro demonstrates why traditional views of evolution are inadequate to explain the latest evidence, and presents an alternative. His information- and systems-based approach integrates advances in symbiogenesis, epigenetics, and saltationism, and points toward an emerging synthesis of physical, information, and biological sciences.
Palaeobiology: A Synthesis was widely acclaimed both for its content and production quality. Ten years on, Derek Briggs and Peter Crowther have once again brought together over 150 leading authorities from around the world to produce Palaeobiology II. Using the same successful formula, the content is arranged as a series of concise articles, taking a thematic approach to the subject, rather than treating the various fossil groups systematically. This entirely new book, with its diversity of new topics and over 100 new contributors, reflects the exciting developments in the field, including accounts of spectacular newly discovered fossils, and embraces data from other disciplines such as astrobiology, geochemistry and genetics. Palaeobiology II will be an invaluable resource, not only for palaeontologists, but also for students and researchers in other branches of the earth and life sciences. Written by an international team of recognised authorities in the field. Content is concise but informative. Demonstrates how palaeobiological studies are at the heart of a range of scientific themes.
This book proposes a new way to think about evolution. The author carefully brings together evidence from diverse fields of science. In the process, he bridges the gaps between many different--and usually seen as conflicting--ideas to present one integrative theory named ONCE, which stands for Organic Nonoptimal Constrained Evolution. The author argues that evolution is mainly driven by the behavioral choices and persistence of organisms themselves, in a process in which Darwinian natural selection is mainly a secondary--but still crucial--evolutionary player. Within ONCE, evolution is therefore generally made of mistakes and mismatches and trial-and-error situations, and is not a process where organisms engage in an incessant, suffocating struggle in which they can't thrive if they are not optimally adapted to their habitats and the external environment. Therefore, this unifying view incorporates a more comprehensive view of the diversity and complexity of life by stressing that organisms are not merely passive evolutionary players under the rule of external factors. This insightful and well-reasoned argument is based on numerous fascinating case studies from a wide range of organisms, including bacteria, plants, insects and diverse examples from the evolution of our own species. The book has an appeal to researchers, students, teachers, and those with an interest in the history and philosophy of science, as well as to the broader public, as it brings life back into biology by emphasizing that organisms, including humans, are the key active players in evolution and thus in the future of life on this wonderful planet.
Sequence - Evolution - Function is an introduction to the computational approaches that play a critical role in the emerging new branch of biology known as functional genomics. The book provides the reader with an understanding of the principles and approaches of functional genomics and of the potential and limitations of computational and experimental approaches to genome analysis. Sequence - Evolution - Function should help bridge the "digital divide" between biologists and computer scientists, allowing biologists to better grasp the peculiarities of the emerging field of Genome Biology and to learn how to benefit from the enormous amount of sequence data available in the public databases. The book is non-technical with respect to the computer methods for genome analysis and discusses these methods from the user's viewpoint, without addressing mathematical and algorithmic details. Prior practical familiarity with the basic methods for sequence analysis is a major advantage, but a reader without such experience will be able to use the book as an introduction to these methods. This book is perfect for introductory level courses in computational methods for comparative and functional genomics.
Evolution: Components and Mechanisms introduces the many recent discoveries and insights that have added to the discipline of organic evolution, and combines them with the key topics needed to gain a fundamental understanding of the mechanisms of evolution. Each chapter covers an important topic or factor pertinent to a modern understanding of evolutionary theory, allowing easy access to particular topics for either study or review. Many chapters are cross-referenced. Modern evolutionary theory has expanded significantly within only the past two to three decades. In recent times the definition of a gene has evolved, the definition of organic evolution itself is in need of some modification, the number of known mechanisms of evolutionary change has increased dramatically, and the emphasis placed on opportunity and contingency has increased. This book synthesizes these changes and presents many of the novel topics in evolutionary theory in an accessible and thorough format. This book is an ideal, up-to-date resource for biologists, geneticists, evolutionary biologists, developmental biologists, and researchers in, as well as students and academics in these areas and professional scientists in many subfields of biology. - Discusses many of the mechanisms responsible for evolutionary change - Includes an appendix that provides a brief synopsis of these mechanisms with most discussed in greater detail in respective chapters - Aids readers in their organization and understanding of the material by addressing the basic concepts and topics surrounding organic evolution - Covers some topics not typically addressed, such as opportunity, contingency, symbiosis, and progress
The second part of the book focuses on codon usage bias.