Download Free Evolutionary Biology Genome Evolution Speciation Coevolution And Origin Of Life Book in PDF and EPUB Free Download. You can read online Evolutionary Biology Genome Evolution Speciation Coevolution And Origin Of Life and write the review.

This book includes the most essential contributions presented at the 17th Evolutionary Biology Meeting in Marseille, which took place in September 2013. It consists of 18 chapters organized according to the following categories: · Molecular and Genome Evolution · Phylogeography of Speciation and Coevolution · Exobiology and Origin of Life The aims of the annual meetings in Marseille, which bring together leading evolutionary biologists and other scientists using evolutionary biology concepts, e.g. for medical research, are to promote the exchange of ideas and to encourage interdisciplinary collaborations. Offering an overview of the latest findings in the field of evolutionary biology, this book represents an invaluable source of information for scientists, teachers and advanced students.
Encyclopedia of Evolutionary Biology, Four Volume Set is the definitive go-to reference in the field of evolutionary biology. It provides a fully comprehensive review of the field in an easy to search structure. Under the collective leadership of fifteen distinguished section editors, it is comprised of articles written by leading experts in the field, providing a full review of the current status of each topic. The articles are up-to-date and fully illustrated with in-text references that allow readers to easily access primary literature. While all entries are authoritative and valuable to those with advanced understanding of evolutionary biology, they are also intended to be accessible to both advanced undergraduate and graduate students. Broad topics include the history of evolutionary biology, population genetics, quantitative genetics; speciation, life history evolution, evolution of sex and mating systems, evolutionary biogeography, evolutionary developmental biology, molecular and genome evolution, coevolution, phylogenetic methods, microbial evolution, diversification of plants and fungi, diversification of animals, and applied evolution. Presents fully comprehensive content, allowing easy access to fundamental information and links to primary research Contains concise articles by leading experts in the field that ensures current coverage of each topic Provides ancillary learning tools like tables, illustrations, and multimedia features to assist with the comprehension process
Presents, for the general readership, the novel picture of evolution proposed in the 1995 book, The major transitions in evolution.
This book presents 15 selected contributions to the 22nd Evolutionary Biology Meeting, which took place in September 2018 in Marseille. They are grouped under the following major themes: · Origin of Life · Concepts and Methods · Genome and Phenotype Evolution The aims of these annual meetings in Marseille are to bring together leading evolutionary biologists and other scientists who employ evolutionary biology concepts, e.g. for medical research, and to promote the exchange of ideas and encourage interdisciplinary collaborations. Offering an up-to-date overview of recent advances in the field of evolutionary biology, this book represents an invaluable source of information for scientists, teachers and advanced students.
The Logic of Chance offers a reappraisal and a new synthesis of theories, concepts, and hypotheses on the key aspects of the evolution of life on earth in light of comparative genomics and systems biology. The author presents many specific examples from systems and comparative genomic analysis to begin to build a new, much more detailed, complex, and realistic picture of evolution. The book examines a broad range of topics in evolutionary biology including the inadequacy of natural selection and adaptation as the only or even the main mode of evolution; the key role of horizontal gene transfer in evolution and the consequent overhaul of the Tree of Life concept; the central, underappreciated evolutionary importance of viruses; the origin of eukaryotes as a result of endosymbiosis; the concomitant origin of cells and viruses on the primordial earth; universal dependences between genomic and molecular-phenomic variables; and the evolving landscape of constraints that shape the evolution of genomes and molecular phenomes. "Koonin's account of viral and pre-eukaryotic evolution is undoubtedly up-to-date. His "mega views" of evolution (given what was said above) and his cosmological musings, on the other hand, are interesting reading." Summing Up: Recommended Reprinted with permission from CHOICE, copyright by the American Library Association.
In this groundbreaking book, Lynn Margulis and Dorion Sagan present an answer to one of the enduring mysteries of evolution -- the source of inherited variation that gives rise to new species. Random genetic mutation, long believed to be the main source of variation, is only a marginal factor. As the authors demonstrate in this book, the more important source of speciation, by far, is the acquisition of new genomes by symbiotic merger. The result of thirty years of delving into a vast, mostly arcane literature, this is the first book to go beyond -- and reveal the severe limitations of -- the "Modern Synthesis" that has dominated evolutionary biology for almost three generations. Lynn Margulis, whom E. O. Wilson called "one of the most successful synthetic thinkers in modern biology," and her co-author Dorion Sagan have written a comprehensive and scientifically supported presentation of a theory that directly challenges the assumptions we hold about the variety of the living world.
This book presents 15 selected contributions to the 22nd Evolutionary Biology Meeting, which took place in September 2018 in Marseille. They are grouped under the following major themes: · Origin of Life · Concepts and Methods · Genome and Phenotype Evolution The aims of these annual meetings in Marseille are to bring together leading evolutionary biologists and other scientists who employ evolutionary biology concepts, e.g. for medical research, and to promote the exchange of ideas and encourage interdisciplinary collaborations. Offering an up-to-date overview of recent advances in the field of evolutionary biology, this book represents an invaluable source of information for scientists, teachers and advanced students.
The origin of life is a hotly debated topic. The Christian Bible states that God created the heavens and the Earth, all in about seven days roughly six thousand years ago. This episode in Genesis departs markedly from scientific theories developed over the last two centuries which hold that life appeared on Earth about 3.5 billion years ago in the form of bacteria, followed by unicellular organisms half a millennia later. It is this version of genesis that Alexandre Meinesz explores in this engaging tale of life's origins and evolution. How Life Began elucidates three origins, or geneses, of life—bacteria, nucleated cells, and multicellular organisms—and shows how evolution has sculpted life to its current biodiversity through four main events—mutation, recombination, natural selection, and geologic cataclysm. As an ecologist who specializes in algae, the first organisms to colonize Earth, Meinesz brings a refreshingly novel voice to the history of biodiversity and emphasizes here the role of unions in organizing life. For example, the ingestion of some bacteria by other bacteria led to mitochondria that characterize animal and plant cells, and the chloroplasts of plant cells. As Meinesz charmingly recounts, life’s grandeur is a result of an evolutionary tendency toward sociality and solidarity. He suggests that it is our cohesion and collaboration that allows us to solve the environmental problems arising in the decades and centuries to come. Rooted in the science of evolution but enlivened with many illustrations from other disciplines and the arts, How Life Began intertwines the rise of bacteria and multicellular life with Vermeer’s portrait of Antoni van Leeuwenhoek, the story of Genesis and Noah, Meinesz’s son’s early experiences with Legos, and his own encounters with other scientists. All of this brings a very human and humanistic tone to Meinesz’s charismatic narrative of the three origins of life.
Even before the publication of Darwin's Origin of Species, the perception of evolutionary change has been a tree-like pattern of diversification - with divergent branches spreading further and further from the trunk. In the only illustration of Darwin's treatise, branches large and small never reconnect. However, it is now evident that this view does not adequately encompass the richness of evolutionary pattern and process. Instead, the evolution of species from microbes to mammals builds like a web that crosses and re-crosses through genetic exchange, even as it grows outward from a point of origin. Some of the avenues for genetic exchange, for example introgression through sexual recombination versus lateral gene transfer mediated by transposable elements, are based on definably different molecular mechanisms. However, even such widely different genetic processes may result in similar effects on adaptations (either new or transferred), genome evolution, population genetics, and the evolutionary/ecological trajectory of organisms. For example, the evolution of novel adaptations (resulting from lateral gene transfer) leading to the flea-borne, deadly, causative agent of plague from a rarely-fatal, orally-transmitted, bacterial species is quite similar to the adaptations accrued from natural hybridization between annual sunflower species resulting in the formation of several new species. Thus, more and more data indicate that evolution has resulted in lineages consisting of mosaics of genes derived from different ancestors. It is therefore becoming increasingly clear that the tree is an inadequate metaphor of evolutionary change. In this book, Arnold promotes the 'web-of-life' metaphor as a more appropriate representation of evolutionary change in all lifeforms. This research level text is suitable for senior undergraduate and graduate level students taking related courses in departments of genetics, ecology and evolution. It will also be of relevance and use to professional evolutionary biologists and systematists seeking a comprehensive and authoritative overview of this rapidly expanding field.
Evolution is the single unifying principle of biology and core to everything in the life sciences. More than a century of work by scientists from across the biological spectrum has produced a detailed history of life across the phyla and explained the mechanisms by which new species form. This textbook covers both this history and the mechanisms of speciation; it also aims to provide students with the background needed to read the research literature on evolution. Students will therefore learn about cladistics, molecular phylogenies, the molecular-genetical basis of evolutionary change including the important role of protein networks, symbionts and holobionts, together with the core principles of developmental biology. The book also includes introductory appendices that provide background knowledge on, for example, the diversity of life today, fossils, the geology of Earth and the history of evolutionary thought. Key Features Summarizes the origins of life and the evolution of the eukaryotic cell and of Urbilateria, the last common ancestor of invertebrates and vertebrates. Reviews the history of life across the phyla based on the fossil record and computational phylogenetics. Explains evo-devo and the generation of anatomical novelties. Illustrates the roles of small populations, genetic drift, mutation and selection in speciation. Documents human evolution using the fossil record and evidence of dispersal across the world leading to the emergence of modern humans.