Download Free Evolution The Logic Of Biology Book in PDF and EPUB Free Download. You can read online Evolution The Logic Of Biology and write the review.

The formal systems of logic have ordinarily been regarded as independent of biology, but recent developments in evolutionary theory suggest that biology and logic may be intimately interrelated. In this book, William Cooper outlines a theory of rationality in which logical law emerges as an intrinsic aspect of evolutionary biology. This biological perspective on logic, though at present unorthodox, could change traditional ideas about the reasoning process. Cooper examines the connections between logic and evolutionary biology and illustrates how logical rules are derived directly from evolutionary principles, and therefore have no independent status of their own. Laws of decision theory, utility theory, induction, and deduction are reinterpreted as natural consequences of evolutionary processes. Cooper's connection of logical law to evolutionary theory ultimately results in a unified foundation for an evolutionary science of reason. It will be of interest to professionals and students of philosophy of science, logic, evolutionary theory, and cognitive science.
By focusing on the cellular mechanisms that underlie ontogeny, phylogeny and regeneration of complex physiologic traits, Evolution, the Logic of Biology demonstrates the use of homeostasis, the fundamental principle of physiology and medicine, as the unifying mechanism for evolution as all of biology. The homeostasis principle can be used to understand how environmental stressors have affected physiologic mechanisms to generate condition-specific novelty through cellular mechanisms. Evolution, the Logic of Biology allows the reader to understand the vertebrate life-cycle as an intergenerational continuum in support of effective, on-going environmental adaptation. By understanding the principles of physiology from their fundamental unicellular origins, culminating in modern-day metazoans, the reader as student, researcher or practitioner will be encouraged to think in terms of the prevention of disease, rather than in the treatment of disease as the eradication of symptoms. By tracing the ontogeny and phylogeny of this and other phenotypic homologies, one can perceive and understand how complex physiologic traits have mechanistically evolved from their simpler ancestral and developmental origins as cellular structures and functions, providing a logic of biology for the first time. Evolution, the Logic of Biology will be an invaluable resource for graduate students and researchers studying evolutionary development, medicine and biology, anthropology, comparative and developmental biology, genetics and genomics, and physiology.
The Logic of Chance offers a reappraisal and a new synthesis of theories, concepts, and hypotheses on the key aspects of the evolution of life on earth in light of comparative genomics and systems biology. The author presents many specific examples from systems and comparative genomic analysis to begin to build a new, much more detailed, complex, and realistic picture of evolution. The book examines a broad range of topics in evolutionary biology including the inadequacy of natural selection and adaptation as the only or even the main mode of evolution; the key role of horizontal gene transfer in evolution and the consequent overhaul of the Tree of Life concept; the central, underappreciated evolutionary importance of viruses; the origin of eukaryotes as a result of endosymbiosis; the concomitant origin of cells and viruses on the primordial earth; universal dependences between genomic and molecular-phenomic variables; and the evolving landscape of constraints that shape the evolution of genomes and molecular phenomes. "Koonin's account of viral and pre-eukaryotic evolution is undoubtedly up-to-date. His "mega views" of evolution (given what was said above) and his cosmological musings, on the other hand, are interesting reading." Summing Up: Recommended Reprinted with permission from CHOICE, copyright by the American Library Association.
How should the concept of evidence be understood? And how does the concept of evidence apply to the controversy about creationism as well as to work in evolutionary biology about natural selection and common ancestry? In this rich and wide-ranging book, Elliott Sober investigates general questions about probability and evidence and shows how the answers he develops to those questions apply to the specifics of evolutionary biology. Drawing on a set of fascinating examples, he analyzes whether claims about intelligent design are untestable; whether they are discredited by the fact that many adaptations are imperfect; how evidence bears on whether present species trace back to common ancestors; how hypotheses about natural selection can be tested, and many other issues. His book will interest all readers who want to understand philosophical questions about evidence and evolution, as they arise both in Darwin's work and in contemporary biological research.
In this book the authors draw on what is known, largely from recent research, about the nature of genes and cells, the genetics of development and animal and plant body plans, intra- and interorganismal communication, sensation and perception, to propose that a few basic generalizations, along with the modified application of the classical evolutionary theory, can provide a broader theoretical understanding of genes, evolution, and the diverse and complex nature of living organisms.
Genesis: The Evolution of Biology presents a history of the past two centuries of biology, suitable for use in courses, but of interest more broadly to evolutionary biologists, geneticists, and biomedical scientists, as well as general readers interested in the history of science. The book covers the early evolutionary biologists-Lamarck, Cuvier, Darwin and Wallace through Mayr and the neodarwinian synthesis, in much the same way as other histories of evolution have done, bringing in also the social implications, the struggles with our religious understanding, and the interweaving of genetics into evolutionary theory. What is novel about Sapp's account is a real integration of the cytological tradition, from Schwann, Boveri, and the other early cell biologists and embryologists, and the coverage of symbiosis, microbial evolutionary phylogenies, and the new understanding of the diversification of life coming from comparative analyses of complete microbial genomes. The book is a history of theories about evolution, genes and organisms from Lamarck and Darwin to the present day. This is the first book on the general history of evolutionary biology to include the history of research and theories about symbiosis in evolution, and first to include research on microbial evolution which were excluded from the classical neo-Darwinian synthesis. Bacterial evolution, and symbiosis in evolution are also excluded from virtually every book on the history of biology.
"Mr. Wolkenstein's Physical Approaches to Biological Evolution, whether or not it proves to give the ultimate truth on the matters with which it deals, certainly deserves, by its breadth and scope and profundity, to be considered an impor tant event in the philosophical world." This is a quotation from an introduction written by Bertrand Russell for Ludwig Wittgenstein's Tractatus Logico-Philosophicus. I exchanged only name and subject. As for the rest, I could continue quoting Russell, but I would rather say something myself. As Wittgenstein did with formal logic, Wolkenstein rectifies our views on how to approach the logic of life from a formal theoretical basis. Many bio logists do not believe that their subject lends itself to the scrutiny of physical theory. They certainly admit that one can simulate biological phenomena by models that can be expressed in a mathematical form. However, they do not believe that biology can be given a theoretical foundation that is defined within the general framework of physics. Rather, they insist on a holistic approach, banning any reduction to fundamental principles subject to physical theory.
Traces scholarly thought from the nineteenth-century birth of evolutionary biology to the mapping of the human genome through forty-eight essays, arranged in chronological order, each preceded by a one-page essay that explains the significance of the chosen work.
The world’s most revered and eloquent interpreter of evolutionary ideas offers here a work of explanatory force unprecedented in our time—a landmark publication, both for its historical sweep and for its scientific vision. With characteristic attention to detail, Stephen Jay Gould first describes the content and discusses the history and origins of the three core commitments of classical Darwinism: that natural selection works on organisms, not genes or species; that it is almost exclusively the mechanism of adaptive evolutionary change; and that these changes are incremental, not drastic. Next, he examines the three critiques that currently challenge this classic Darwinian edifice: that selection operates on multiple levels, from the gene to the group; that evolution proceeds by a variety of mechanisms, not just natural selection; and that causes operating at broader scales, including catastrophes, have figured prominently in the course of evolution. Then, in a stunning tour de force that will likely stimulate discussion and debate for decades, Gould proposes his own system for integrating these classical commitments and contemporary critiques into a new structure of evolutionary thought. In 2001 the Library of Congress named Stephen Jay Gould one of America’s eighty-three Living Legends—people who embody the “quintessentially American ideal of individual creativity, conviction, dedication, and exuberance.” Each of these qualities finds full expression in this peerless work, the likes of which the scientific world has not seen—and may not see again—for well over a century.
According to polling data, most Americans doubt that evolution is a real phenomenon. And it’s no wonder that so many are skeptical: many of today’s biology courses and textbooks dwell on the mechanisms of evolution—natural selection, genetic drift, and gene flow—but say little about the evidence that evolution happens at all. How do we know that species change? Has there really been enough time for evolution to operate? With The Evidence for Evolution, Alan R. Rogers provides an elegant, straightforward text that details the evidence for evolution. Rogers covers different levels of evolution, from within-species changes, which are much less challenging to see and believe, to much larger ones, say, from fish to amphibian, or from land mammal to whale. For each case, he supplies numerous lines of evidence to illustrate the changes, including fossils, DNA, and radioactive isotopes. His comprehensive treatment stresses recent advances in knowledge but also recounts the give and take between skeptical scientists who first asked “how can we be sure” and then marshaled scientific evidence to attain certainty. The Evidence for Evolution is a valuable addition to the literature on evolution and will be essential to introductory courses in the life sciences.