Download Free Evolution Of The Primate Brain Book in PDF and EPUB Free Download. You can read online Evolution Of The Primate Brain and write the review.

This volume of Progress in Brain Research provides a synthetic source of information about state-of-the-art research that has important implications for the evolution of the brain and cognition in primates, including humans. This topic requires input from a variety of fields that are developing at an unprecedented pace: genetics, developmental neurobiology, comparative and functional neuroanatomy (at gross and microanatomical levels), quantitative neurobiology related to scaling factors that constrain brain organization and evolution, primate palaeontology (including paleoneurology), paleo-anthropology, comparative psychology, and behavioural evolutionary biology. Written by internationally-renowned scientists, this timely volume will be of wide interest to students, scholars, science journalists, and a variety of experts who are interested in keeping track of the discoveries that are rapidly emerging about the evolution of the brain and cognition. Written by internationally renowned scientists, this timely volume will be of wide interest to students, scholars, science journalists, and a variety of experts who are interested in keeping track of the discoveries that are rapidly emerging about the evolution of the brain and cognition
Review of brain evolution in primates including humans.
Leaders in cognitive psychology, comparative biology, and neuroscience discuss patterns of convergence and divergence seen in studies of human and nonhuman primate brains. The extraordinary overlap between human and chimpanzee genomes does not result in an equal overlap between human and chimpanzee thoughts, sensations, perceptions, and emotions; there are considerable similarities but also considerable differences between human and nonhuman primate brains. From Monkey Brain to Human Brain uses the latest findings in cognitive psychology, comparative biology, and neuroscience to look at the complex patterns of convergence and divergence in primate cortical organization and function. Several chapters examine the use of modern technologies to study primate brains, analyzing the potentials and the limitations of neuroimaging as well as genetic and computational approaches. These methods, which can be applied identically across different species of primates, help to highlight the paradox of nonlinear primate evolution--the fact that major changes in brain size and functional complexity resulted from small changes in the genome. Other chapters identify plausible analogs or homologs in nonhuman primates for such human cognitive functions as arithmetic, reading, theory of mind, and altruism; examine the role of parietofrontal circuits in the production and comprehension of actions; analyze the contributions of the prefrontal and cingulate cortices to cognitive control; and explore to what extent visual recognition and visual attention are related in humans and other primates. The Fyssen Foundation is dedicated to encouraging scientific inquiry into the cognitive mechanisms that underlie animal and human behavior and has long sponsored symposia on topics of central importance to the cognitive sciences.
Primate Adaptation and Evolutionis the only recent text published in this rapidly progressing field. It provides you with an extensive, current survey of the order Primates, both living and fossil. By combining information on primate anatomy, ecology, and behavior with the primate fossil record, this book enables students to study primates from all epochs as a single, viable group. It surveys major primate radiations throughout 65 million years, and provides equal treatment of both living and extinct species.ï Presents a summary of the primate fossilsï Reviews primate evolutionï Provides an introduction to the primate anatomyï Discusses the features that distinguish the living groups of primatesï Summarizes recent work on primate ecology
Evolutionary Neuroscience is a collection of articles in brain evolution selected from the recent comprehensive reference, Evolution of Nervous Systems (Elsevier, Academic Press, 2007). The selected chapters cover a broad range of topics from historical theory to the most recent deductions from comparative studies of brains. The articles are organized in sections focused on theories and brain scaling, the evolution of brains from early vertebrates to present-day fishes, amphibians, reptiles and birds, the evolution of mammalian brains, and the evolution of primate brains, including human brains. Each chapter is written by a leader or leaders in the field, and has been reviewed by other experts. Specific topics include brain character reconstruction, principles of brain scaling, basic features of vertebrate brains, the evolution of the major sensory systems, and other parts of brains, what we can learn from fossils, the origin of neocortex, and the evolution of specializations of human brains. The collection of articles will be interesting to anyone who is curious about how brains evolved from the simpler nervous systems of the first vertebrates into the many different complex forms now found in present-day vertebrates. This book would be of use to students at the graduate or undergraduate levels, as well as professional neuroscientists, cognitive scientists, and psychologists. Together, the chapters provide a comprehensive list of further reading and references for those who want to inquire further. - The most comprehensive, authoritative and up-to-date single volume collection on brain evolution - Full color throughout, with many illustrations - Written by leading scholars and experts
Given the past decade's explosion of neurobiological and paleontologi cal data and their increasingly sophisticated analyses, interdisciplinary syntheses between these two broad disciplines are of value and interest to many different scientists. The collected papers of this volume will appeal to students of primate and hominid evolution, neuroscientists, sociobiolo gists, and other behaviorists who seek a better understanding of the substrates of primate, including human, behavior. Each species of living primates represents an endpoint in evolution, but comparative neurologists can produce approximate evolutionary se quences by careful analyses of representative series. Because nervous tissue does not fossilize, only a comparison of structures and functions among extant primates can be used to investigate the fine details of primate bra~n evolution. Paleoneurologists, who directly examine the fossil record via endocasts or cranial capacities of fossil skulls, can best provide information about gross details, such as changes in brain size or sulcal patterns, and determine when they occurred. Physical anthropologists and paleontologists have traditionally relied more on paleoneurology, whereas neuroscientists and psychologists have relied more on comparative neurology. This division has been a detriment to the advancement of these fields and to the conceptual bases of primate brain evolution. Both methods are important and a synthesis is desirable. To this end, two symposia were held in 1980--one at the meeting of the American Association of Physical Anthro pologists in Niagara Falls, U. S. A. , and one at the precongressional meeting of the International Primatological Society in Torino, Italy.
How did the human brain with all its manifold capacities evolve from basic functions in simple organisms that lived nearly a billion years ago? John Allman addresses this question in Evolving Brains, a provocative study of brain evolution that introduces readers to some of the most exciting developments in science in recent years.
Why our human brains are awesome, and how we left our cousins, the great apes, behind: a tale of neurons and calories, and cooking. Humans are awesome. Our brains are gigantic, seven times larger than they should be for the size of our bodies. The human brain uses 25% of all the energy the body requires each day. And it became enormous in a very short amount of time in evolution, allowing us to leave our cousins, the great apes, behind. So the human brain is special, right? Wrong, according to Suzana Herculano-Houzel. Humans have developed cognitive abilities that outstrip those of all other animals, but not because we are evolutionary outliers. The human brain was not singled out to become amazing in its own exclusive way, and it never stopped being a primate brain. If we are not an exception to the rules of evolution, then what is the source of the human advantage? Herculano-Houzel shows that it is not the size of our brain that matters but the fact that we have more neurons in the cerebral cortex than any other animal, thanks to our ancestors' invention, some 1.5 million years ago, of a more efficient way to obtain calories: cooking. Because we are primates, ingesting more calories in less time made possible the rapid acquisition of a huge number of neurons in the still fairly small cerebral cortex—the part of the brain responsible for finding patterns, reasoning, developing technology, and passing it on through culture. Herculano-Houzel shows us how she came to these conclusions—making “brain soup” to determine the number of neurons in the brain, for example, and bringing animal brains in a suitcase through customs. The Human Advantage is an engaging and original look at how we became remarkable without ever being special.