Download Free Evolution Of Postembryonic Development Book in PDF and EPUB Free Download. You can read online Evolution Of Postembryonic Development and write the review.

Insect Metamorphosis: From Natural History to Regulation of Development and Evolution explores the origin of metamorphosis, how it evolved, and how it is it regulated. The book discusses insect metamorphosis as a key innovation in insect evolution. With most of the present biodiversity on Earth composed of metamorphosing insects—approximately 1 million species currently described, with another 10-30 million still waiting to be discovered, the book delves into misconceptions and past treatments. In addition, the topic of integrating insect metamorphosis into the theory of evolution by natural selection as noted by Darwin in his On the Origin of Species is also discussed. Users will find this to be a comprehensive and updated review on insect metamorphosis, covering biological, physiological and molecular facets, with an emphasis on evolutionary aspects. - Features updated knowledge from the past decade on the mechanisms of action of juvenile hormone, the main doorkeeper of insect metamorphosis - Aids researchers in entomology or developmental biology dealing with specialized aspects of metamorphosis - Provides applied entomologists with recently updated data, especially on regulation, to better face the problems of pest control and management - Gives general evolutionary biologists context on the process of metamorphosis in its larger scope
This book is aimed at students taking courses on evolution in universities and colleges. Its approach and its structure are very different from previously-published evolution texts. The core theme in this book is how evolution works by changing the course of embryonic and post-embryonic development. In other words, it is an evolution text that has been very much influenced by the new approach of evolutionary developmental biology, or 'evo-devo'. Key themes include the following: developmental repatterning; adaptation and coadaptation; gene co-option; developmental plasticity; the origins of evolutionary novelties and body plans; and evolutionary changes in the complexity of organisms. As can be seen from this list, the book includes information across the levels of the gene, the organism, and the population. It also includes the issue of mapping developmental changes onto evolutionary trees. The examples used to illustrate particular points range widely, including animals, plants and fossils. "I have really enjoyed reading this book. One of the strengths of the book is the almost conversational style. I found the style easy to read, but also feel that it will be invaluable in teaching. One of our tasks in university level teaching is to develop students' critical thinking skills. We need to support them in their intellectual development from a "just the facts" approach to being able to make critical judgements based on available evidence. The openness and honesty with which Arthur speaks to uncertainty in science is refreshing and will be a baseline for discussions with students." -Professor Patricia Moore, Exeter University "This book, written as an undergraduate text, is a really most impressive book. Given the burgeoning interest in the role of developmental change in evolution in recent times, this will be a very timely publication. The book is well structured and, like the author's other books, very well written. He communicates with a clear, lucid style and has the ability to explain even the more difficult concepts in an accessible manner." ---Professor Kenneth McNamara, University of Cambridge The companion site can be found at www.wiley.com/go/arthur/evolution. Here you download all figures from the book, captions, tables, and table of contents.
The male reproductive system and spermatogenesis -- The female reproductive system and oogenesis -- Sperm transfer, allocation, and use -- Sex determination -- Parthenogenesis -- Early embryogenesis -- Specification of the body plan in insect embryos -- Organogenesis -- Postembryonic development and life history -- Molting and metamorphosis -- Specification of the adult body pattern -- Hormones, molting, and metamorphosis -- Ontogeny and hexapod evolution.
Contemporary research in the field of evolutionary developmental biology, or 'evo-devo', has to date been predominantly devoted to interpreting basic features of animal architecture in molecular genetics terms. Considerably less time has been spent on the exploitation of the wealth of facts and concepts available from traditional disciplines, such as comparative morphology, even though these traditional approaches can continue to offer a fresh insight into evolutionary developmental questions. The Development of Animal Form aims to integrate traditional morphological and contemporary molecular genetic approaches and to deal with post-embryonic development as well. This approach leads to unconventional views on the basic features of animal organization, such as body axes, symmetry, segments, body regions, appendages and related concepts. This book will be of particular interest to graduate students and researchers in evolutionary and developmental biology, as well as to those in related areas of cell biology, genetics and zoology.
1 Kevin Moses It is now 25 years since the study of the development of the compound eye in Drosophila really began with a classic paper (Ready et al. 1976). In 1864, August Weismann published a monograph on the development of Diptera and included some beautiful drawings of the developing imaginal discs (Weismann 1864). One of these is the first description of the third instar eye disc in which Weismann drew a vertical line separating a posterior domain that included a regular pattern of clustered cells from an anterior domain without such a pattern. Weismann suggested that these clusters were the precursors of the adult ommatidia and that the line marks the anterior edge of the eye. In his first suggestion he was absolutely correct - in his second he was wrong. The vertical line shown was not the anterior edge of the eye, but the anterior edge of a moving wave of patterning and cell type specification that 112 years later (1976) Ready, Hansen and Benzer would name the "morphogenetic furrow". While it is too late to hear from August Weismann, it is a particular pleasure to be able to include a chapter in this Volume from the first author of that 1976 paper: Don Ready! These past 25 years have seen an astonishing explosion in the study of the fly eye (see Fig.
In an age when advanced molecular and genetic tools allow studies in various systems, amphibian metamorphosis still offers perhaps the most accessible model for the study of postembryonic organogenesis and mechanisms of hormonal regulation during vertebrate development. Amphibian Metamorphosis: From Morphology to Molecular Biology integrates findings from the most recent research with earlier observations, providing molecular and mechanistic insights into the signal transduction pathways underlying tissue-specific transformations during metamorphosis. The author, renowned expert of anuran metamorphosis and Head of the Unit of Molecular Morphogenesis at NICHD/NIH, begins with an overview of metamorphosis in different classes of amphibians and various factors that influence this process. A review of earlier morphological, cellular, and biochemical changes focuses on organs and tissues that have been studied extensively at the molecular level, while discussion of the thyroid hormone signal transduction pathway emphasizes transcriptional regulation mechanisms by thyroid receptors. The book provides a summary and comparison of gene regulation programs induced by thyroid hormone in several organs that undergo distinct metamorphic transformations. Several chapters are devoted to functional and mechanistic implications of the molecular findings on the thyroid hormone response genes in tissue transformation. Special features of this book include: * An emphasis on integrating the morphological approach with molecularand cell biology * A historical perspective on the progression from discovery of the thyroid hormone to present-day research advances * Comparisons of amphibian and insect metamorphosis * Dozens of instructive photographs, several in full color Amphibian Metamorphosis: From Morphology to Molecular Biology is a unique and invaluable resource for professionals and aspiring professionals in develop-mental biology, molecular biology, cell biology, evolutionary biology, and endocrinology.
More than two thirds of all living organisms described to date belong to the phylum Arthropoda. But their diversity, as measured in terms of species number, is also accompanied by an amazing disparity in terms of body form, developmental processes, and adaptations to every inhabitable place on Earth, from the deepest marine abysses to the earth surface and the air. The Arthropoda also include one of the most fashionable and extensively studied of all model organisms, the fruit-fly, whose name is not only linked forever to Mendelian and population genetics, but has more recently come back to centre stage as one of the most important and more extensively investigated models in developmental genetics. This approach has completely changed our appreciation of some of the most characteristic traits of arthropods as are the origin and evolution of segments, their regional and individual specialization, and the origin and evolution of the appendages. At approximately the same time as developmental genetics was eventually turning into the major agent in the birth of evolutionary developmental biology (evo-devo), molecular phylogenetics was challenging the traditional views on arthropod phylogeny, including the relationships among the four major groups: insects, crustaceans, myriapods, and chelicerates. In the meantime, palaeontology was revealing an amazing number of extinct forms that on the one side have contributed to a radical revisitation of arthropod phylogeny, but on the other have provided evidence of a previously unexpected disparity of arthropod and arthropod-like forms that often challenge a clear-cut delimitation of the phylum.
Genomic Control Process explores the biological phenomena around genomic regulatory systems that control and shape animal development processes, and which determine the nature of evolutionary processes that affect body plan. Unifying and simplifying the descriptions of development and evolution by focusing on the causality in these processes, it provides a comprehensive method of considering genomic control across diverse biological processes. This book is essential for graduate researchers in genomics, systems biology and molecular biology seeking to understand deep biological processes which regulate the structure of animals during development. - Covers a vast area of current biological research to produce a genome oriented regulatory bioscience of animal life - Places gene regulation, embryonic and postembryonic development, and evolution of the body plan in a unified conceptual framework - Provides the conceptual keys to interpret a broad developmental and evolutionary landscape with precise experimental illustrations drawn from contemporary literature - Includes a range of material, from developmental phenomenology to quantitative and logic models, from phylogenetics to the molecular biology of gene regulation, from animal models of all kinds to evidence of every relevant type - Demonstrates the causal power of system-level understanding of genomic control process - Conceptually organizes a constellation of complex and diverse biological phenomena - Investigates fundamental developmental control system logic in diverse circumstances and expresses these in conceptual models - Explores mechanistic evolutionary processes, illuminating the evolutionary consequences of developmental control systems as they are encoded in the genome