Download Free Evolution From Space Book in PDF and EPUB Free Download. You can read online Evolution From Space and write the review.

From Simon & Schuster, Evolution from Space is Sir Fred Hoyle and Chandra Wickramasinghe's theory of cosmic creationism in this daring and fascinating sequel to Lifecloud and Diseases from Space. Evolution from Space presents the revolutionary theory that mathematics can establish the probable existence of God and suggests that life began in space under the direction of a great intelligence.
Using interviews with and writings by astronauts and cosmonauts, discusses how viewing the Earth from space and from the moon affect space explorers' perceptions of the world and humanity, and how those changes are likewise felt in contemporary society. The author views space exploration and eventual colonization as an inevitable step in the evolution of human society and consciousness, one which offers new perspectives on the problems facing us down here on Earth. Annotation copyrighted by Book News, Inc., Portland, OR
As we speak, stunning new snapshots of our Solar System are being transmitted to Earth by a fleet of space probes, landers, and rovers. Yet nowadays, it is all too easy to take such images for granted amidst the deluge of competing visuals we scroll through every day. To truly understand the value of these incredible space photos, we first need to understand the tools that made them possible. This is the story of imaging instruments in space, detailing all the technological missteps and marvels that have allowed us to view planetary bodies like never before. From the rudimentary cameras launched in the 1950’s to the cutting-edge imaging instruments onboard the Mars Perseverance rover, this book covers more than 100 imaging systems sent aboard various spacecraft to explore near and distant planetary bodies. Featured within are some of the most striking images ever received by these pioneering instruments, including Voyager’s Pale Blue Dot, Apollo’s Blue Marble, Venera’s images from the surface of Venus, Huygens’ images of Titan, New Horizon’s images of Pluto and Arrokoth, and much more. Along the way, you will learn about advancements in data transmission, digitization, citizen science, and other fields that revolutionized space imaging, helping us peer farther and more clearly across the Solar System.
As concerns about the change in global climate and the loss of biodiversity have mounted, attention has focused on the depletion of the ozone layer and the destruction of tropical rainforests. But recently scientists have identified another seriously endangered ecosystem: coral reefs. In Corals in Space and Time, J.E.N. Veron provides a richly detailed study of corals that will inform investigations of these fragile ecosystems. Drawing on twenty-five years of research, Veron brings together extensive field observations about the taxonomy, biogeography, paleontology, and biology of corals. After introducing coral taxonomy and biogeography, as well as relevant aspects of coral biology for the non-specialist, he provides an interpretation of the fossil record and paleoclimates, an analysis of modern coral distribution, and a discussion of the evolutionary nature and origins of coral species. Revealing a sharp conflict between empirical observations about the geographical variation within species, Veron introduces a non-Darwinian theory of coral evolution. He proposes that the evolution of coral species is driven not primarily by natural selection, but by constantly shifting patterns of ocean circulation, which produce changing variations of genetic connectivity. This mechanism of speciation and hybridization has far-reaching consequences for the study of all types of corals and potentially many other groups of organisms as well.
2008 Outstanding Academic Title, Choice Magazine Given the near incomprehensible enormity of the universe, it appears almost inevitable that humankind will one day find a planet that appears to be much like the Earth. This discovery will no doubt reignite the lure of interplanetary travel. Will we be up to the task? And, given our limited resources, biological constraints, and the general hostility of space, what shape should we expect such expeditions to take? In Robots in Space, Roger Launius and Howard McCurdy tackle these seemingly fanciful questions with rigorous scholarship and disciplined imagination, jumping comfortably among the worlds of rocketry, engineering, public policy, and science fantasy to expound upon the possibilities and improbabilities involved in trekking across the Milky Way and beyond. They survey the literature—fictional as well as academic studies; outline the progress of space programs in the United States and other nations; and assess the current state of affairs to offer a conclusion startling only to those who haven't spent time with Asimov, Heinlein, and Clarke: to traverse the cosmos, humans must embrace and entwine themselves with advanced robotic technologies. Their discussion is as entertaining as it is edifying and their assertions are as sound as they are fantastical. Rather than asking us to suspend disbelief, Robots in Space demands that we accept facts as they evolve.
For many decades scholars from various disciplines have been intrigued by the question whether there are unifying principles or models that have a validity in different disciplines. The building of such analytical frameworks bridging the gaps between scientific traditions is a very ambitious task and has not been very successful up till now. In the past - in a static context - several such principles have been defined and advocated at the edge of the natural sciences on the one hand and social sciences (in particular, economics and geography) on the other hand, mainly based on the paradigm of 'social physics'. Some important contributions to the integration of the spatial systems sciences and physics can be found in gravity theory and entropy theory, which have formed the comer stones of interaction models in space. This book is about spatial interaction models. It describes the origin, the history and the correspondence of such models from a 'social physics' perspective. It is emphasized that such models need a clear behavioural underpinning as a sine qua non for a valid use in spatial systems analysis. This view also explains the use of micro-based disaggregate choice models as a tool for analyzing spatial systems. This is mainly analyzed in Part A of this book.
This book is based partly on a. lecture course given at the University of Tri este, but mostly on my own research experience in the field of galactic chemical evolution. The subject of galactic chemical evolution was started and developed by Beat rice Tinsley in the seventies and now is a flourishing subject. This book is dedi cated to the chemical evolution of our Galaxy and aims at giving an up-to-date review of what we have learned since Tinsley's pioneering efforts. At the time of writing, in fact, books of this kind were not available with the exception of the excellent book by Bernard Pagel on "Nucleosynthesis and Chemical Evolution of Galaxies" (Cambridge University Press, 1997), and the subject of galactic chem ical evolution has appeared only as short chapters in books devoted to other subjects. Therefore, I felt that a book of this kind could be useful. The book summarizes the observational facts which allow us to reconstruct the chemical history of our Galaxy, in particular the abundances in stars and in terstellar medium; in the last decade, a great deal of observational work, mostly abundance determinations in stars in the solar vicinity, has shed light on the pro duction and distribution of chemical elements. Even more recently more abun dance data have accumulated for external galaxies at both low and high redshift, thus providing precious information on the chemical evolution of different types of galaxies and on the early stages of galaxy evolution.
An integrated discussion of the similarities and differences between the atmospheres of various bodies of the solar system, including the Earth.