Download Free Evolution And Transitions In Complexity Book in PDF and EPUB Free Download. You can read online Evolution And Transitions In Complexity and write the review.

During evolution there have been several major changes in the way genetic information is organized and transmitted from one generation to the next. These transitions include the origin of life itself, the first eukaryotic cells, reproduction by sexual means, the appearance of multicellular plants and animals, the emergence of cooperation and of animal societies. This is the first book to discuss all these major transitions and their implications for our understanding of evolution.Clearly written and illustrated with many original diagrams, this book will be welcomed by students and researchers in the fields of evolutionary biology, ecology, and genetics.
This book discusses several recent theoretic advancements in interdisciplinary and transdisciplinary integration in the field of evolution. While exploring novel views, the text maintains a close link with one of the most broadly held views on evolution, namely that of “Darwinian evolution.” This work puts forth a new point of view which allows researchers to define in detail the concept of evolution. To create this conceptual definition, the text applies a stringent object-based focus. With this focus, the editor has been able to develop an object-based pattern of evolution at the smallest scale. Subsequently, this smallest scale pattern is used as an innovative basis for generalizations. These generalizations create links between biological Darwinism and generalized Darwinism. The object-based approach that was used to suggest innovations in the field of Darwinian evolution also allowed for contributions to other topics, such as major evolutionary transitions theory, the definition of life and the relationships between evolution, self-organization and thermodynamics. Together, the chapters of this book and the multidisciplinary reflections and comments of various specialists on these chapters offer an exciting palette of innovative ideas.
The book integrates our understanding of the factors and processes underlying the evolution of multicellularity by providing several complementary perspectives (both theoretical and experimental) and using examples from various lineages in which multicellularity evolved. Recent years marked an increased interest in understanding how and why these transitions occurred, and data from various fields are providing new insights into the forces driving the several independent transitions to multicellular life as well as into the genetic and molecular basis for the evolution of this phenotype. The ultimate goal of this book is to facilitate the identification of general and unifying principles and mechanisms.
This edited research monograph brings together contributions from computer scientists, biologists, and engineers who are engaged with the study of evolution and how it may be applied to solve real-world problems. It also serves as a Festschrift dedicated to Erik D. Goodman, the founding director of the BEACON Center for the Study of Evolution in Action, a pioneering NSF Science and Technology Center headquartered at Michigan State University. The contributing authors are leading experts associated with the center, and they serve in top research and industrial establishments across the US and worldwide. Part I summarizes the history of the BEACON Center, with refreshingly personal chapters that describe Erik's working and leadership style, and others that discuss the development and successes of the center in the context of research funding, projects, and careers. The chapters in Part II deal with the evolution of genomes and evolvability. The contributions in Part III discuss the evolution of behavior and intelligence. Those in Part IV concentrate on the evolution of communities and collective dynamics. The chapters in Part V discuss selected evolutionary computing applications in domains such as arts and science, automated program repair, cybersecurity, mechatronics, and genomic prediction. Part VI deals with evolution in the classroom, using creativity in research, and responsible conduct in research training. The book concludes with a special chapter from Erik Goodman, a short biography that concentrates on his personal positive influences and experiences throughout his long career in academia and industry.
How do we explain the remarkably abrupt changes that sometimes occur in nature and society--and can we predict why and when they happen? This book offers a comprehensive introduction to critical transitions in complex systems--the radical changes that happen at tipping points when thresholds are passed. Marten Scheffer accessibly describes the dynamical systems theory behind critical transitions, covering catastrophe theory, bifurcations, chaos, and more. He gives examples of critical transitions in lakes, oceans, terrestrial ecosystems, climate, evolution, and human societies. And he demonstrates how to deal with these transitions, offering practical guidance on how to predict tipping points, how to prevent "bad" transitions, and how to promote critical transitions that work for us and not against us. Scheffer shows the time is ripe for understanding and managing critical transitions in the vast and complex systems in which we live. This book can also serve as a textbook and includes a detailed appendix with equations. Provides an accessible introduction to dynamical systems theory Covers critical transitions in lakes, oceans, terrestrial ecosystems, the climate, evolution, and human societies Explains how to predict tipping points Offers strategies for preventing "bad" transitions and triggering "good" ones Features an appendix with equations
Investigates and sets out the common principles of social evolution operating across all taxa and levels of biological organisation.
Harry Smit examines the elements of current evolutionary theory and how they bear on the evolution of the human mind.
Tackling one of the most difficult and delicate of the evolutionary questions, this challenging book summarizes the more recent results in phylogenetics and developmental biology that address the evolution of key innovations in metazoans. Divided into three sections, the first considers the phylogenetic issues involving this area of the tree of lif
For students, researchers and professional scientist eager to gain insight into the emerging frontiers of Artifical Life, Chris Adami's work provides the basic underpinnings for properly understanding this interdisciplinary research area. The CD-ROM accompanying the book invites readers to actively experience artificial evolution in "real time" by using a proprietary simulation software program, AVIDA, which is contained on the CD.
Phase transitions--changes between different states of organization in a complex system--have long helped to explain physics concepts, such as why water freezes into a solid or boils to become a gas. How might phase transitions shed light on important problems in biological and ecological complex systems? Exploring the origins and implications of sudden changes in nature and society, Phase Transitions examines different dynamical behaviors in a broad range of complex systems. Using a compelling set of examples, from gene networks and ant colonies to human language and the degradation of diverse ecosystems, the book illustrates the power of simple models to reveal how phase transitions occur. Introductory chapters provide the critical concepts and the simplest mathematical techniques required to study phase transitions. In a series of example-driven chapters, Ricard Solé shows how such concepts and techniques can be applied to the analysis and prediction of complex system behavior, including the origins of life, viral replication, epidemics, language evolution, and the emergence and breakdown of societies. Written at an undergraduate mathematical level, this book provides the essential theoretical tools and foundations required to develop basic models to explain collective phase transitions for a wide variety of ecosystems.