Download Free Evolution And Function Of Heterostyly Book in PDF and EPUB Free Download. You can read online Evolution And Function Of Heterostyly and write the review.

A century of research on heterostylous plants has passed since the publication of Charles Darwin's book "The Different Forms of Flowers on Plants of the Same Species" in 1877 summarizing his extensive observations and experiments on these complex breeding systems involving genetic polymorphisms of floral sex organs. Since then heterostylous plants have provided a rich source of material for evolutionary biologists and today they represent one of the classic research paradigms for approaches to the study of evolution and adaptation. The present book is the first modern and comprehensive accont of the subject. In 10 chapters it is concerned with the evolution, genetics, development, morphology, and adaptive significance of heterostyly. Broad syntheses of research on heterostyly as well as new theoretical ideas and experimental data are included.
Studies in floral biology are largely concerned with how flowers function to promote pollination and mating. The role of pollination in governing mating patterns in plant populations inextricably links the evolution of pollination and mating systems. Despite the close functional link between pollination and mating, research conducted for most of this century on these two fundamental aspects of plant reproduction has taken quite separate courses. This has resulted in suprisingly little cross-fertilization between the fields of pollination biology on the one hand and plant mating-system studies on the other. The separation of the two areas has largely resulted from the different backgrounds and approaches adopted by workers in these fields. Most pollination studies have been ecological in nature with a strong emphasis on field research and until recently few workers considered how the mechanics of pollen dispersal might influence mating patterns and individual plant fitness. In contrast, work on plant mating patterns has often been conducted in an ecological vacuum largely devoid of information on the environmental and demographic context in which mating occurs. Mating-system research has been dominated by population genetic and theoretical perspectives with surprisingly little consideration given to the proximate ecological factors responsible for causing a particular pattern of mating to occur.
Great progress has been made in our understanding of pollen-pistil interactions and self-incompatibility (SI) in flowering plants in the last few decades. This book covers a broad spectrum of research into SI, with accounts by internationally renowned scientists. It comprises two sections: Evolution and Population Genetics of SI, Molecular and Cell Biology of SI Systems. The reader will gain an insight into the diversity and complexity of these polymorphic cell-cell recognition and rejection systems. Heteromorphic and homomorphic SI systems and our current understanding of the evolution and phylogeny of these systems, based on the most recent molecular sequence data, are covered. Further, the book presents major advances in our knowledge of the pistil and pollen S-determinants and other unlinked components involved in SI, as well as the apparently diverse cellular regulatory mechanisms utilised to ensure inhibition of “self” pollen.
A unique account of the structure, biology and evolution of tropical flowering plants.
A century of research on heterostylous plants has passed since the publication of Charles Darwin's book "The Different Forms of Flowers on Plants of the Same Species" in 1877 summarizing his extensive observations and experiments on these complex breeding systems involving genetic polymorphisms of floral sex organs. Since then heterostylous plants have provided a rich source of material for evolutionary biologists and today they represent one of the classic research paradigms for approaches to the study of evolution and adaptation. The present book is the first modern and comprehensive accont of the subject. In 10 chapters it is concerned with the evolution, genetics, development, morphology, and adaptive significance of heterostyly. Broad syntheses of research on heterostyly as well as new theoretical ideas and experimental data are included.
A century of research on heterostylous plants has passed since the publication of Charles Darwin's book "The Different Forms of Flowers on Plants of the Same Species" in 1877 summarizing his extensive observations and experiments on these complex breeding systems involving genetic polymorphisms of floral sex organs. Since then heterostylous plants have provided a rich source of material for evolutionary biologists and today they represent one of the classic research paradigms for approaches to the study of evolution and adaptation. The present book is the first modern and comprehensive accont of the subject. In 10 chapters it is concerned with the evolution, genetics, development, morphology, and adaptive significance of heterostyly. Broad syntheses of research on heterostyly as well as new theoretical ideas and experimental data are included.
Plant reproductive biology has undergone a revolution during the past five years, with the cloning, sequencing and localization of the genes important in reproduction. These advantages in plant molecular biology have led to exciting applications in plant biotechnology, including the genetic engineering of male sterility and other reproductive processes. This book presents an interesting and contemporary account of these new developments from the scientists in whose laboratories they have been made. The chapters focus on two areas: the molecular biology of self-incompatibility, which is the system of self-recognition controlled by the S-gene and related genes; and the cellular and molecular biology of pollen development and genetic dissection of male sterility. Some chapters feature Arabidopsis, with its unique genetic system. Reproduction is vital for seed production in crop plants, and this book presents new approaches to manipulate plant breeding systems for the 21st century.
Advances in plant cell molecular biology have considerably increased our understanding of pollen-pistil barriers, particularly those operated by incompatibility mechanisms, and, at the same time, demonstrated the complexity and diversity of rejection systems once considered to be relatively simple. This book reviews the impressive knowledge acquired in the last century on the biology, particularly the inheritance and population genetics of self-incompatibility, and presents the new approaches to the study of the structure, function and evolution of incompatibility alleles and the analysis of cell-cell recognition and pollen rejection. The different methods now available for transforming the breeding behaviour of higher plants are also discussed.
Flower, fruit, phylogeny, evolution, plant morphology, reproduction, seeds, dispersal.
Written by the leading experts in the field, this book examines the evolutionary advantages of gender dimorphism and sexual dimorphism in flowering plants. Divided into three sections: the first introduces readers to the tremendous variety of breeding systems and their evolution in plants and sets the stage for a consideration of the evolution of dimorphism in reproductive and non-reproductive characters. The second section deals with the evolution of secondary sexual characters, including the theory related to the evolution of sexual dimorphism and its empirical patterns, while the last section deals with the genetics of gender expression and of secondary sexual characters.