Download Free Evaluation Of Polymer Modified Asphalt Cements In Hot Mix Asphalt Book in PDF and EPUB Free Download. You can read online Evaluation Of Polymer Modified Asphalt Cements In Hot Mix Asphalt and write the review.

"ASTM Publication Code Number (PCN) 04-011080-08. - "Sponsored by ASTM Committee D-4 on Road and Paving Materials."-- Foreword. - Includes bibliographical references and indexes. - Electronic reproduction; W. Conshohocken, Pa; ASTM International; 2011; Mode of access: World Wide Web; System requirements: Web browser; Access may be restricted to users at subscribing institutions.
Polymer modified asphalts have recently been the focus of much attention in the U.S. due to claims that polymer additives will lengthen the life of an asphalt pavement. Much of the published research on this topic has been concentrated on the effects of polymer modifiers on binder and mixture properties. The goal of this testing is to predict from laboratory testing the actual field performance of an asphalt concrete. Over the years, specifications have been developed for conventional asphalts that allow pavement performance to be predicted from certain binder tests. These conventional binder tests do not fully address the special characteristics of polymer modified asphalt binders and need revision to be an effective tool in predicting pavement service life. This paper presents the findings of a two-part laboratory research program intended to relate binder and mixture properties of polymer modified asphalts. The preliminary testing involved five asphalt binder types and a variety of binder and mixture tests. Promising test procedures were further investigated in the final testing program where ten asphalt binders were examined. Simple linear regression was used to determine the strength of a relationship between pairs of binder properties and mixture properties. The preliminary testing showed penetration, toughness and tenacity, and force ductility to have the most promise in predicting mixture performance. The final testing contained enough data to be analyzed with both simple linear regression and multiple regression. Penetration, toughness and tenacity, force ductility again were the test procedures that had binder properties that correlated well with mixture properties.
This study evaluated and compared the effectiveness of polymer-modified asphalt mixes in improving the performance of the roadway in relation to rutting and cracking as compared to our standard mixes without modified binders. The addition of various polymers used in this study did not enhance the rut resistance potential of the mix, however the addition of the polymer did reduce the amount of transverse and longitudinal cracking to some extent.
Following the five-year study performed to investigate the behavior of binders and asphalt mixtures containing polymer modifiers, it was determined that an insufficient amount of time had elapsed to allow any determinations to be made based upon the special field test sections. The study reported herein was to extend that initial time and to study in depth those special test sections, using visual observations coupled with resulting tests performed on samples extracted from the sections and comparisons with the original data developed in the original research. The research includes laboratory testing of field samples, determining the aging effect on the control and modified binders and corresponding effect on the mixtures, and visual evaluations. Retained samples of the original asphalts were also evaluated for potential performance as determined by the performance-based asphalt binder specification developed by the Strategic Highway Research Program. Four hot mix pavement field projects were constructed in the Tyler, Lufkin, San Antonio, and Childress Districts (10, 11, 15, and 25, respectively), and two seal coat projects were placed in the Odessa and Bryan Districts (6 and 17).
This report covers the pre-construction, construction and the first evaluation following construction at the following locations: I-25, Colorado Boulevard; I-25, Pueblo; Highway 85, Santa Fe Avenue; and I-70, Flagler. An additional project has been added that will be constructed during the 1992 construction season. This project is located on Brighton Boulevard between I-70 and Sand Creek. This project will contain a section with Type I polymer, a section with Type III polymer and also a section with no binder.