Download Free Evaluation Of Energy Efficiency And Flexibility In Smart Buildings Book in PDF and EPUB Free Download. You can read online Evaluation Of Energy Efficiency And Flexibility In Smart Buildings and write the review.

This Special Issue “Evaluation of Energy Efficiency and Flexibility in Smart Buildings” addresses the relevant role of buildings as strategic instruments to improve the efficiency and flexibility of the overall energy system. This role of the built environment is not yet fully developed and exploited and the book content contributes to increasing the general awareness of achievable benefits. In particular, different topics are discussed, such as optimal control, innovative efficient technologies, methodological approaches, and country analysis about energy efficiency and energy flexibility potential of the built environment. The Special Issue offers valuable insights into the most recent research developments worldwide.
Technologies for Integrated Energy Systems and Networks Explore emerging technologies that will play a central role in humanity’s transition to a low-carbon future In Technologies for Integrated Energy Systems and Networks, a team of distinguished authors delivers a detailed discussion of integrated energy systems and networks, including a comprehensive overview of emerging technologies. The book focuses on the technologies and systems that play a major role in integrated energy systems, like renewable and distributed energy resources, power conversion technologies, hydrogen, storage technologies, electric mobility, zero- and positive-energy buildings, and local energy communities. A one-of-a-kind and holistic treatment of integrated energy systems, this book explores power conversion, including power-to-gas, power-to-liquid, and power- to-heat technologies, as well as other issues of interest to a broad range of students, professionals, and academicians involved in energy transition. It also covers: A thorough introduction to the digitalization of the energy sector and local market development enabling citizen involvement Comprehensive explorations of integrated energy systems as an engine of energy transition Practical discussions of renewable and distributed energy resources for sustainable economic development In-depth examinations of the role of hydrogen in a low-carbon energy future and the storage technologies of different energy carriers Perfect for electrical, construction, power and energy engineers, Technologies for Integrated Energy Systems and Networks will also earn a place in the libraries of electrochemists and environmental consultants.
This is the first book entirely devoted to providing a perspective on the state-of-the-art of cloud computing and energy services and the impact on designing sustainable systems. Cloud computing services provide an efficient approach for connecting infrastructures and can support sustainability in different ways. For example, the design of more efficient cloud services can contribute in reducing energy consumption and environmental impact. The chapters in this book address conceptual principles and illustrate the latest achievements and development updates concerning sustainable cloud and energy services. This book serves as a useful reference for advanced undergraduate students, graduate students and practitioners interested in the design, implementation and deployment of sustainable cloud based energy services. Professionals in the areas of power engineering, computer science, and environmental science and engineering will find value in the multidisciplinary approach to sustainable cloud and energy services presented in this book.
Building Energy Flexibility and Demand Management looks at the high penetration of intermittent renewable energy sources and the need for increased flexibility. Ensuring electrical power systems adapt to dynamic energy demand and supply conditions, the book supports the transition to a renewable energy future with current fluctuating power generation. By facilitating the penetration of renewable energy sources into the building sector and balancing electricity supply with demand in real-time, this book will provide fundamental concepts, theories, and methods to understand, quantify, design and optimize building energy flexibility. In addition, the book also provides case studies with emerging technologies to enhance building energy flexibility and demonstrate how demand management strategies can utilize energy flexibility for demand reduction and load shifting. It will be useful for all those researchers and engineers working in flexible energy systems and advanced demand side management strategies. - Focuses on how renewable energy and storage technologies can be appropriately designed and optimized to increase building energy flexibility - Discusses how building energy flexibility can contribute to reduced operating costs and grid optimization - Details how to effectively implement building energy flexibility for demand response, peak demand reduction and peak load shifting
The world is transforming its energy system from one dominated by fossil fuel combustion to one with net-zero emissions of carbon dioxide (CO2), the primary anthropogenic greenhouse gas. This energy transition is critical to mitigating climate change, protecting human health, and revitalizing the U.S. economy. To help policymakers, businesses, communities, and the public better understand what a net-zero transition would mean for the United States, the National Academies of Sciences, Engineering and Medicine convened a committee of experts to investigate how the U.S. could best decarbonize its transportation, electricity, buildings, and industrial sectors. This report, Accelerating Decarbonization of the United States Energy System, identifies key technological and socio-economic goals that must be achieved to put the United States on the path to reach net-zero carbon emissions by 2050. The report presents a policy blueprint outlining critical near-term actions for the first decade (2021-2030) of this 30-year effort, including ways to support communities that will be most impacted by the transition.
Application of Smart Grid Technologies: Case Studies in Saving Electricity in Different Parts of the World provides a wide international view of smart grid technologies and their implementation in all regions of the globe. A brief overview of smart grid concepts and state-of-the art technologies is followed by sections that highlight smart grid experiences in Asia, Africa, North America, South America, Europe and Australasia. Chapters address select countries or sub-regions, presenting their local technological needs and specificities, status of smart grid implementation, technologies of choice, impacts on their electricity markets, and future trends. Similar chapter makes it easier to compare these experiences. In a time when the smart grid is becoming a worldwide reality, this book is ideal for professionals in power transmission and distribution companies, as well as students and researchers in the same field. It is also useful for those involved in energy management and policymaking. - Presents the status and challenges of smart grid technologies and their implementation around the globe - Includes global case studies written by local experts and organized for easy comparison - Provides a brief overview of smart grid concepts and currently available technologies
This book investigates positive energy buildings (PEBs). It provides and describes them, explains why they are important in the fight against climate change and discusses how they might be implemented. This book begins by contextualizing PEBs, discussing concepts, definitions and how they may be included by planning authorities in development plans. It then thoroughly explains what PEBs are and their impact on a climate-neutral economy. The book discusses technological, economic, societal and regulatory challenges and opportunities in employing PEBs, before concluding with possible scenarios for implementing them. This book is of use to researchers, practitioners, and policy makers interested in local and decentralized energy, as well as plans to achieve carbon neutrality.
This book highlights scientific achievements in the key areas of sustainable electricity generation and green building technologies, as presented in the vital bi-annual World Renewable Energy Network’s Med Green Forum. Renewable energy applications in power generation and sustainable development have particular importance in the Mediterranean region, with its rich natural resources and conducive climate, making it a perfect showcase to illustrate the viability of using renewable energy to satisfy all energy needs. The papers included in this work describe enabling policies and offer pathways to further develop a broad range of renewable energy technologies and applications in all sectors – for electricity production, heating and cooling, agricultural applications, water desalination, industrial applications and for the transport sector.
HVAC systems, load shifting, indoor climate, and energy and ventilation performance analyses are the key topics when improving energy performance in new and renovated buildings. This development has been boosted by the recently established nearly zero energy building requirements that will soon be in use in all EU Member States, as well as similar long-term zero energy building targets in Japan, the US, and other countries. The research covered in this Special Issue provides evidence of how new technical solutions have worked, in practice, in new or renovated buildings, and also discusses problems and how solutions should be further developed. Another focus is on the more detailed calculation methods needed for the correct design and sizing of dedicated systems, and for accurate quantification of energy savings. Occupant behavior and building operation is also examined, in order to avoid common performance gaps between calculated and measured performance. These topics demonstrate the challenge of high performance buildings as, in the end, comfortable buildings with good indoor climate which are easy and cheap to operate and maintain are expected by end customers. Ventilation performance, heating and cooling, sizing, energy predictions and optimization, load shifting, and field studies are some of the key topics in this Special Issue, contributing to the future of high performance buildings with reliable operation.