Download Free Estimation Of The Water Table For The Inland Bays Watershed Delaware Book in PDF and EPUB Free Download. You can read online Estimation Of The Water Table For The Inland Bays Watershed Delaware and write the review.

A multiple linear regression method was used to estimate water-table elevations under dry, normal, and wet conditions for the Coastal Plain of Delaware. The variables used in the regression are elevation of an initial water table and depth to the initial water table from land surface. The initial water table is computed from a local polynomial regression of elevations of surface-water features. Correlation coefficients from the multiple linear regression estimation account for more than 90 percent of the variability observed in ground-water level data. The estimated water table is presented in raster format as GISready grids with 30-m horizontal (-98 ft) and 0.305-m (1 ft) vertical resolutions. Water-table elevation and depth are key facets in many engineering, hydrogeologic, and environmental management and regulatory decisions. Depth to water is an important factor in risk assessments, site assessments, evaluation of permit compliance data, registration of pesticides, and determining acceptable pesticide application rates.Water-table elevations are used to compute ground-water flow directions and, along with information about aquifer properties (e.g., hydraulic conductivity and porosity), are used to compute ground-water flow velocities. Therefore, obtaining an accurate representation of the water table is also crucial to the success of many hydrologic modeling efforts. Water-table elevations can also be estimated from simple linear regression on elevations of either land surface or initial water table. The goodness-of-fits of elevations estimated from these surfaces are similar to that of multiple linear regression. Visual analysis of the distributions of the differences between observed and estimated water elevations (residuals) shows that the multiple linear regression-derived surfaces better fit observations than do surfaces estimated by simple linear regression.
Delaware's Inland Bays in southeastern Sussex County are valuable natural resources that have been experiencing environmental degradation since the late 1960s. Stresses on the water resource include land use practices, modifications of surface drainage, ground-water pumping, and wastewater disposal. One of the primary environmental problems in the Inland Bays is nutrient over-enrichment. Nitrogen and phosphorous loads are delivered to the bays by ground water, surface water, and air. Nitrogen loading from ground-water discharge is one of the most difficult to quantify; therefore, locating these discharge areas is a critical step toward mitigating this load to the bays. Landsat 7 imagery was used to identify ground-water discharge areas in Indian River and Rehoboth and Indian River bays in Sussex County, Delaware. Panchromatic, near-infrared, and thermal bands were used to identify ice patterns and temperature differences in the surface water, which are indicative of ground-water discharge. Defining a shoreline specific to each image was critical in order to eliminate areas of the bays that were not representative of open water. Atmospheric correction was not necessary due to low humidity conditions during image acquisition. Ground-water discharge locations were identified on the north shore of Rehoboth Bay (west of the Lewes and Rehoboth Canal), Herring and Guinea creeks, the north shore of Indian River, and the north shore of Indian River Bay near Oak Orchard.