Download Free Estimation Of Mortality Rates In Stage Structured Population Book in PDF and EPUB Free Download. You can read online Estimation Of Mortality Rates In Stage Structured Population and write the review.

The stated aims of the Lecture Notes in Biomathematics allow for work that is "unfinished or tentative". This volume is offered in that spirit. The problem addressed is one of the classics of statistical ecology, the estimation of mortality rates from stage-frequency data, but in tackling it we found ourselves making use of ideas and techniques very different from those we expected to use, and in which we had no previous experience. Specifically we drifted towards consideration of some rather specific curve and surface fitting and smoothing techniques. We think we have made some progress (otherwise why publish?), but are acutely aware of the conceptual and statistical clumsiness of parts of the work. Readers with sufficient expertise to be offended should regard the monograph as a challenge to do better. The central theme in this book is a somewhat complex algorithm for mortality estimation (detailed at the end of Chapter 4). Because of its complexity, the job of implementing the method is intimidating. Any reader interested in using the methods may obtain copies of our code as follows: Intelligible Structured Code 1. Hutchinson and deHoog's algorithm for fitting smoothing splines by cross validation 2. Cubic covariant area-approximating splines 3. Cubic interpolating splines 4. Cubic area matching splines 5. Hyman's algorithm for monotonic interpolation based on cubic splines. Prototype User-Hostile Code 6. Positive constrained interpolation 7. Positive constrained area matching 8. The "full method" from chapter 4 9. The "simpler" method from chapter 4.
This open access book shows how to use sensitivity analysis in demography. It presents new methods for individuals, cohorts, and populations, with applications to humans, other animals, and plants. The analyses are based on matrix formulations of age-classified, stage-classified, and multistate population models. Methods are presented for linear and nonlinear, deterministic and stochastic, and time-invariant and time-varying cases. Readers will discover results on the sensitivity of statistics of longevity, life disparity, occupancy times, the net reproductive rate, and statistics of Markov chain models in demography. They will also see applications of sensitivity analysis to population growth rates, stable population structures, reproductive value, equilibria under immigration and nonlinearity, and population cycles. Individual stochasticity is a theme throughout, with a focus that goes beyond expected values to include variances in demographic outcomes. The calculations are easily and accurately implemented in matrix-oriented programming languages such as Matlab or R. Sensitivity analysis will help readers create models to predict the effect of future changes, to evaluate policy effects, and to identify possible evolutionary responses to the environment. Complete with many examples of the application, the book will be of interest to researchers and graduate students in human demography and population biology. The material will also appeal to those in mathematical biology and applied mathematics.
Using Science to Improve the BLM Wild Horse and Burro Program: A Way Forward reviews the science that underpins the Bureau of Land Management's oversight of free-ranging horses and burros on federal public lands in the western United States, concluding that constructive changes could be implemented. The Wild Horse and Burro Program has not used scientifically rigorous methods to estimate the population sizes of horses and burros, to model the effects of management actions on the animals, or to assess the availability and use of forage on rangelands. Evidence suggests that horse populations are growing by 15 to 20 percent each year, a level that is unsustainable for maintaining healthy horse populations as well as healthy ecosystems. Promising fertility-control methods are available to help limit this population growth, however. In addition, science-based methods exist for improving population estimates, predicting the effects of management practices in order to maintain genetically diverse, healthy populations, and estimating the productivity of rangelands. Greater transparency in how science-based methods are used to inform management decisions may help increase public confidence in the Wild Horse and Burro Program.
In the summer of 1993, twenty-six graduate and postdoctoral stu dents and fourteen lecturers converged on Cornell University for a summer school devoted to structured-population models. This school was one of a series to address concepts cutting across the traditional boundaries separating terrestrial, marine, and freshwa ter ecology. Earlier schools resulted in the books Patch Dynamics (S. A. Levin, T. M. Powell & J. H. Steele, eds., Springer-Verlag, Berlin, 1993) and Ecological Time Series (T. M. Powell & J. H. Steele, eds., Chapman and Hall, New York, 1995); a book on food webs is in preparation. Models of population structure (differences among individuals due to age, size, developmental stage, spatial location, or genotype) have an important place in studies of all three kinds of ecosystem. In choosing the participants and lecturers for the school, we se lected for diversity-biologists who knew some mathematics and mathematicians who knew some biology, field biologists sobered by encounters with messy data and theoreticians intoxicated by the elegance of the underlying mathematics, people concerned with long-term evolutionary problems and people concerned with the acute crises of conservation biology. For four weeks, these perspec tives swirled in discussions that started in the lecture hall and carried on into the sweltering Ithaca night. Diversity mayor may not increase stability, but it surely makes things interesting.
Elasmobranch - describes a group of fish without a hard bony skeleton, including sharks, skates, and rays.
This book provides a complete treatment of matrix population models and their applications in ecology and demography. It is written for graduate students and researchers in ecology, population biology, conservation biology and human demography.
Integrated Population Models: Theory and Ecological Applications with R and JAGS is the first book on integrated population models, which constitute a powerful framework for combining multiple data sets from the population and the individual levels to estimate demographic parameters, and population size and trends. These models identify drivers of population dynamics and forecast the composition and trajectory of a population. Written by two population ecologists with expertise on integrated population modeling, this book provides a comprehensive synthesis of the relevant theory of integrated population models with an extensive overview of practical applications, using Bayesian methods by means of case studies. The book contains fully-documented, complete code for fitting all models in the free software, R and JAGS. It also includes all required code for pre- and post-model-fitting analysis. Integrated Population Models is an invaluable reference for researchers and practitioners involved in population analysis, and for graduate-level students in ecology, conservation biology, wildlife management, and related fields. The text is ideal for self-study and advanced graduate-level courses. - Offers practical and accessible ecological applications of IPMs (integrated population models) - Provides full documentation of analyzed code in the Bayesian framework - Written and structured for an easy approach to the subject, especially for non-statisticians
One of the themes of the 20th International Congress of Entomology held in Florence in August 1996 was Ecology and Population Dynamics, with papers presented on single species dynamics, population interactions, and community ecology. This book contains a selection of the papers that were presented, and gives a late-1990s picture of the latest research in this fast developing area.
Estimation of the Time Since Death remains the foremost authoritative book on scientifically calculating the estimated time of death postmortem. Building on the success of previous editions which covered the early postmortem period, this new edition also covers the later postmortem period including putrefactive changes, entomology, and postmortem r