Download Free Estimation Of A Stochastic Volatility Model Using Pricing And Hedging Information Book in PDF and EPUB Free Download. You can read online Estimation Of A Stochastic Volatility Model Using Pricing And Hedging Information and write the review.

Estimation of option pricing models in which the underlying asset exhibits stochastic volatility presents complicated econometric questions. One such question, thus far unstudied, is whether the inclusion of information derived from hedging relationships implied by an option pricing model may be used in conjunction with pricing information to provide more reliable parameter estimates than the use of pricing information alone. This paper estimates, using a simple least-squares procedure, the stochastic volatility model of Heston (1993), and includes hedging information in the objective function. This hedging information enters the objective function through a weighting parameter that is chosen optimally within the model. With the weight appropriately chosen, we find that incorporating the hedging information reduces both the out-of-sample hedging and pricing errors associated with the Heston model.
This book, first published in 2000, addresses pricing and hedging derivative securities in uncertain and changing market volatility.
Building upon the ideas introduced in their previous book, Derivatives in Financial Markets with Stochastic Volatility, the authors study the pricing and hedging of financial derivatives under stochastic volatility in equity, interest-rate, and credit markets. They present and analyze multiscale stochastic volatility models and asymptotic approximations. These can be used in equity markets, for instance, to link the prices of path-dependent exotic instruments to market implied volatilities. The methods are also used for interest rate and credit derivatives. Other applications considered include variance-reduction techniques, portfolio optimization, forward-looking estimation of CAPM 'beta', and the Heston model and generalizations of it. 'Off-the-shelf' formulas and calibration tools are provided to ease the transition for practitioners who adopt this new method. The attention to detail and explicit presentation make this also an excellent text for a graduate course in financial and applied mathematics.
Packed with insights, Lorenzo Bergomi's Stochastic Volatility Modeling explains how stochastic volatility is used to address issues arising in the modeling of derivatives, including:Which trading issues do we tackle with stochastic volatility? How do we design models and assess their relevance? How do we tell which models are usable and when does c
Stochastic Volatility in Financial Markets presents advanced topics in financial econometrics and theoretical finance, and is divided into three main parts. The first part aims at documenting an empirical regularity of financial price changes: the occurrence of sudden and persistent changes of financial markets volatility. This phenomenon, technically termed `stochastic volatility', or `conditional heteroskedasticity', has been well known for at least 20 years; in this part, further, useful theoretical properties of conditionally heteroskedastic models are uncovered. The second part goes beyond the statistical aspects of stochastic volatility models: it constructs and uses new fully articulated, theoretically-sounded financial asset pricing models that allow for the presence of conditional heteroskedasticity. The third part shows how the inclusion of the statistical aspects of stochastic volatility in a rigorous economic scheme can be faced from an empirical standpoint.
Finance, Econometrics and System Dynamics presents an overview of the concepts and tools for analyzing complex systems in a wide range of fields. The text integrates complexity with deterministic equations and concepts from real world examples, and appeals to a broad audience.
The Paris-Princeton Lectures in Financial Mathematics, of which this is the fourth volume, publish cutting-edge research in self-contained, expository articles from outstanding specialists - established or on the rise! The aim is to produce a series of articles that can serve as an introductory reference source for research in the field. The articles are the result of frequent exchanges between the finance and financial mathematics groups in Paris and Princeton. The present volume sets standards with five articles by: 1. Areski Cousin, Monique Jeanblanc and Jean-Paul Laurent, 2. Stéphane Crépey, 3. Olivier Guéant, Jean-Michel Lasry and Pierre-Louis Lions, 4. David Hobson and 5. Peter Tankov.
Contains lectures presented at the Courant Institute's Mathematical Finance Seminar.
Stochastic volatility is the main concept used in the fields of financial economics and mathematical finance to deal with time-varying volatility in financial markets. This work brings together some of the main papers that have influenced this field, andshows that the development of this subject has been highly multidisciplinary.
Today?s traders want to know when volatility is a sign that the sky is falling (and they should stay out of the market), and when it is a sign of a possible trading opportunity. Inside Volatility Arbitrage can help them do this. Author and financial expert Alireza Javaheri uses the classic approach to evaluating volatility -- time series and financial econometrics -- in a way that he believes is superior to methods presently used by market participants. He also suggests that there may be "skewness" trading opportunities that can be used to trade the markets more profitably. Filled with in-depth insight and expert advice, Inside Volatility Arbitrage will help traders discover when "skewness" may present valuable trading opportunities as well as why it can be so profitable.