Download Free Estimation For The Cox Model With Various Types Of Censored Data Book in PDF and EPUB Free Download. You can read online Estimation For The Cox Model With Various Types Of Censored Data and write the review.

In survival analysis, the Cox model is one of the most widely used tools. However, up to now there has not been any published work on the Cox model with complicated types of censored data, such as doubly censored data, partly-interval censored data, etc., while these types of censored data have been encountered in important medical studies, such as cancer, heart disease, diabetes, etc. In this dissertation, we first derive the bivariate nonparametric maximum likelihood estimator (BNPMLE) F̂subscript n](t, z) for joint distribution function F0(t, z) of survival time T and covariate Z, where T is subject to right censoring, noting that such BNPMLE F̂[subscript n] has not been studied in statistical literature. Then, based on this BNPMLE F̂[subscript n] we derive empirical likelihood-based (Owen, 1988) confidence interval for the conditional survival probabilities, which is an important and difficult problem in statistical analysis, and also has not been studied in literature. Finally, with this BNPMLE F̂[subscript n] as a starting point, we extend the weighted empirical likelihood method (Ren, 2001 and 2008a) to the multivariate case, and obtain a weighted empirical likelihood-based estimation method for the Cox model. Such estimation method is given in a unified form, and is applicable to various types of censored data aforementioned.
Interval-Censored Time-to-Event Data: Methods and Applications collects the most recent techniques, models, and computational tools for interval-censored time-to-event data. Top biostatisticians from academia, biopharmaceutical industries, and government agencies discuss how these advances are impacting clinical trials and biomedical research.Divid
This book will be of interest to readers active in the fields of survival analysis, genetics, ecology, biology, demography, reliability and quality control. Since Sir David Cox’s pioneering work in 1972, the proportional hazards model has become the most important model in survival analysis. The success of the Cox model stimulated further studies in semiparametric and nonparametric theories, counting process models, study designs in epidemiology, and the development of many other regression models that could offer more flexible or more suitable approaches in data analysis. Flexible semiparametric regression models are increasingly being used to relate lifetime distributions to time-dependent explanatory variables. Throughout the book, various recent statistical models are developed in close connection with specific data from experimental studies in clinical trials or from observational studies.
Missing data pose challenges to real-life data analysis. Simple ad-hoc fixes, like deletion or mean imputation, only work under highly restrictive conditions, which are often not met in practice. Multiple imputation replaces each missing value by multiple plausible values. The variability between these replacements reflects our ignorance of the true (but missing) value. Each of the completed data set is then analyzed by standard methods, and the results are pooled to obtain unbiased estimates with correct confidence intervals. Multiple imputation is a general approach that also inspires novel solutions to old problems by reformulating the task at hand as a missing-data problem. This is the second edition of a popular book on multiple imputation, focused on explaining the application of methods through detailed worked examples using the MICE package as developed by the author. This new edition incorporates the recent developments in this fast-moving field. This class-tested book avoids mathematical and technical details as much as possible: formulas are accompanied by verbal statements that explain the formula in accessible terms. The book sharpens the reader’s intuition on how to think about missing data, and provides all the tools needed to execute a well-grounded quantitative analysis in the presence of missing data.
This book collects and unifies statistical models and methods that have been proposed for analyzing interval-censored failure time data. It provides the first comprehensive coverage of the topic of interval-censored data and complements the books on right-censored data. The focus of the book is on nonparametric and semiparametric inferences, but it also describes parametric and imputation approaches. This book provides an up-to-date reference for people who are conducting research on the analysis of interval-censored failure time data as well as for those who need to analyze interval-censored data to answer substantive questions.
This monograph contains many ideas on the analysis of survival data to present a comprehensive account of the field. The value of survival analysis is not confined to medical statistics, where the benefit of the analysis of data on such factors as life expectancy and duration of periods of freedom from symptoms of a disease as related to a treatment applied individual histories and so on, is obvious. The techniques also find important applications in industrial life testing and a range of subjects from physics to econometrics. In the eleven chapters of the book the methods and applications of are discussed and illustrated by examples.
Making complex methods more accessible to applied researchers without an advanced mathematical background, the authors present the essence of new techniques available, as well as classical techniques, and apply them to data. Practical suggestions for implementing the various methods are set off in a series of practical notes at the end of each section, while technical details of the derivation of the techniques are sketched in the technical notes. This book will thus be useful for investigators who need to analyse censored or truncated life time data, and as a textbook for a graduate course in survival analysis, the only prerequisite being a standard course in statistical methodology.
A concise summary of the statistical methods used in the analysis of survival data with censoring. Emphasizes recently developed nonparametric techniques. Outlines methods in detail and illustrates them with actual data. Discusses the theory behind each method. Includes numerous worked problems and numerical exercises.