Download Free Estimating The Spatial Distribution Of Groundwater Recharge Rates Using Hydrologic Hydrogeologic And Geochemical Methods Book in PDF and EPUB Free Download. You can read online Estimating The Spatial Distribution Of Groundwater Recharge Rates Using Hydrologic Hydrogeologic And Geochemical Methods and write the review.

Extreme Hydrology and Climate Variability: Monitoring, Modelling, Adaptation and Mitigation is a compilation of contributions by experts from around the world who discuss extreme hydrology topics, from monitoring, to modeling and management. With extreme climatic and hydrologic events becoming so frequent, this book is a critical source, adding knowledge to the science of extreme hydrology. Topics covered include hydrometeorology monitoring, climate variability and trends, hydrological variability and trends, landscape dynamics, droughts, flood processes, and extreme events management, adaptation and mitigation. Each of the book's chapters provide background and theoretical foundations followed by approaches used and results of the applied studies. This book will be highly used by water resource managers and extreme event researchers who are interested in understanding the processes and teleconnectivity of large-scale climate dynamics and extreme events, predictability, simulation and intervention measures. - Presents datasets used and methods followed to support the findings included, allowing readers to follow these steps in their own research - Provides variable methodological approaches, thus giving the reader multiple hydrological modeling information to use in their work - Includes a variety of case studies, thus making the context of the book relatable to everyday working situations for those studying extreme hydrology - Discusses extreme event management, including adaption and mitigation
Environmental Tracers in Subsurface Hydrology synthesizes the research of specialists into a comprehensive review of the application of environmental tracers to the study of soil water and groundwater flow. The book includes chapters which cover ionic tracers, noble gases, chlorofluorocarbons, tritium, chlorine-36, oxygen-18, deuterium, and isotopes of carbon, strontium, sulphur and nitrogen. Applications of the tracers include the estimation of vertical and horizontal groundwater velocities, groundwater recharge rates, inter-aquifer leakage and mixing processes, chemical processes and palaeohydrology. Practicing hydrologists, soil physicists and hydrology professors and students will find the book to be a valuable support in their work.
This book aims to come up with views to address the queries of planners, policymakers, and general people for water resources management under uncertainty of climate change, including examples from Asia and Europe with successful adaptive measures to change the challenge of climate change into opportunities. The availability of clean water is a major global challenge for the future due to a rapidly growing population and urbanization where further stress in water resources is expected due to the impact of climate change. The wide range of impacts includes for example changes in hydrology, moisture availability, spatial and temporal variations in magnitude of stream flow, and dwindling of water levels with adverse effect on wetlands and ecosystem. As a consequence, water management has become a serious issue and was identified as a global societal challenge, and climate change forecasting has become one of the key issues in recent research on sustainable water resources management.
This second edition is extensively revised throughout with expanded discussion of modeling fundamentals and coverage of advances in model calibration and uncertainty analysis that are revolutionizing the science of groundwater modeling. The text is intended for undergraduate and graduate level courses in applied groundwater modeling and as a comprehensive reference for environmental consultants and scientists/engineers in industry and governmental agencies. - Explains how to formulate a conceptual model of a groundwater system and translate it into a numerical model - Demonstrates how modeling concepts, including boundary conditions, are implemented in two groundwater flow codes-- MODFLOW (for finite differences) and FEFLOW (for finite elements) - Discusses particle tracking methods and codes for flowpath analysis and advective transport of contaminants - Summarizes parameter estimation and uncertainty analysis approaches using the code PEST to illustrate how concepts are implemented - Discusses modeling ethics and preparation of the modeling report - Includes Boxes that amplify and supplement topics covered in the text - Each chapter presents lists of common modeling errors and problem sets that illustrate concepts