Download Free Estimating The Local False Discovery Rate Via A Bootstrap Solution To The Reference Class Problem Book in PDF and EPUB Free Download. You can read online Estimating The Local False Discovery Rate Via A Bootstrap Solution To The Reference Class Problem and write the review.

Modern scientific technology such as microarrays, imaging devices, genome-wide association studies or social science surveys provide statisticians with hundreds or even thousands of tests to consider simultaneously. Testing many thousands of null hypotheses may increase the number of Type $I$ errors. In large-scale hypothesis testing, researchers can use different statistical techniques such as family-wise error rates, false discovery rates, permutation methods, local false discovery rate, where all available data usually should be analyzed together. In applications, the thousands of tests are related by a scientifically meaningful structure. Ignoring that structure can be misleading as it may increase the number of false positives and false negatives. As an example, in genome-wide association studies each test corresponds to a specific genetic marker. In such a case, the scientific structure for each genetic marker can be its minor allele frequency. In this research, the local false discovery rate as a relevant statistical approach is considered to analyze the thousands of tests together. We present a model for multiple hypothesis testing when the scientific structure of each test is incorporated as a co-variate. The purpose of this model is to incorporate the co-variate to improve the performance of testing procedures. The method we consider has different estimates depending on the tuning parameter. We would like to estimate the optimal value of that parameter by considering observed statistics. Thus, among those estimators, the one which minimizes the estimated errors due to bias and to variance is chosen by applying the bootstrap approach. Such an estimation method is called an adaptive reference class method. Under the combined reference class method, the effect of the co-variates is ignored and all null hypotheses should be analyzed together. In this research, under some assumptions for the co-variates and the prior probabilities, the proposed adaptive reference class method shows smaller error than the combined reference class method in estimating the local false discovery rate, when the number of tests gets large. We describe the adaptive reference class method to the coronary artery disease data, and we use simulation data to evaluate the performance of the estimator associated with the adaptive reference class method.
Statisticians have met the need to test hundreds or thousands of genomics hypotheses simultaneously with novel empirical Bayes methods that combine advantages of traditional Bayesian and frequentist statistics. Techniques for estimating the local false discovery rate assign probabilities of differential gene expression, genetic association, etc. without requiring subjective prior distributions. This book brings these methods to scientists while keeping the mathematics at an elementary level. Readers will learn the fundamental concepts behind local false discovery rates, preparing them to analyze their own genomics data and to critically evaluate published genomics research. Key Features: * dice games and exercises, including one using interactive software, for teaching the concepts in the classroom * examples focusing on gene expression and on genetic association data and briefly covering metabolomics data and proteomics data * gradual introduction to the mathematical equations needed * how to choose between different methods of multiple hypothesis testing * how to convert the output of genomics hypothesis testing software to estimates of local false discovery rates * guidance through the minefield of current criticisms of p values * material on non-Bayesian prior p values and posterior p values not previously published
Modern hypothesis testing problems involve a large collection of hypotheses H_1 ..., H_N. The Bayesian local false discovery rate is the posterior probability that a hypothesis is null. The local false discovery rate paradigm is therefore an intuitive and attractive approach for deciding which hypotheses to declare as non-null. Accurate local false discovery rate estimation relies on positing an appropriate null distribution, which should be empirically estimated. It is often reasonable to estimate the null distribution from data that is truncated over a region which can safely deemed to be null. This truncation approach is appealing since it enriches the class of models that can be used as candidate null distributions. We propose the use of a log-concave null distribution as a non-parametric extension of earlier local false discovery rate work. Moreover, the truncation approach has a missing data interpretation. For exponential families, a general but simple EM algorithm can be constructed to obtain the maximum likelihood estimates without having to solve the corresponding score equations, which may be awkward in the case of truncation. We verify the correctness of the algorithm by applying Louis' formula (1982).
Statistics
Taken literally, the title "All of Statistics" is an exaggeration. But in spirit, the title is apt, as the book does cover a much broader range of topics than a typical introductory book on mathematical statistics. This book is for people who want to learn probability and statistics quickly. It is suitable for graduate or advanced undergraduate students in computer science, mathematics, statistics, and related disciplines. The book includes modern topics like non-parametric curve estimation, bootstrapping, and classification, topics that are usually relegated to follow-up courses. The reader is presumed to know calculus and a little linear algebra. No previous knowledge of probability and statistics is required. Statistics, data mining, and machine learning are all concerned with collecting and analysing data.
In an age where the amount of data collected from brain imaging is increasing constantly, it is of critical importance to analyse those data within an accepted framework to ensure proper integration and comparison of the information collected. This book describes the ideas and procedures that underlie the analysis of signals produced by the brain. The aim is to understand how the brain works, in terms of its functional architecture and dynamics. This book provides the background and methodology for the analysis of all types of brain imaging data, from functional magnetic resonance imaging to magnetoencephalography. Critically, Statistical Parametric Mapping provides a widely accepted conceptual framework which allows treatment of all these different modalities. This rests on an understanding of the brain's functional anatomy and the way that measured signals are caused experimentally. The book takes the reader from the basic concepts underlying the analysis of neuroimaging data to cutting edge approaches that would be difficult to find in any other source. Critically, the material is presented in an incremental way so that the reader can understand the precedents for each new development. This book will be particularly useful to neuroscientists engaged in any form of brain mapping; who have to contend with the real-world problems of data analysis and understanding the techniques they are using. It is primarily a scientific treatment and a didactic introduction to the analysis of brain imaging data. It can be used as both a textbook for students and scientists starting to use the techniques, as well as a reference for practicing neuroscientists. The book also serves as a companion to the software packages that have been developed for brain imaging data analysis. An essential reference and companion for users of the SPM software Provides a complete description of the concepts and procedures entailed by the analysis of brain images Offers full didactic treatment of the basic mathematics behind the analysis of brain imaging data Stands as a compendium of all the advances in neuroimaging data analysis over the past decade Adopts an easy to understand and incremental approach that takes the reader from basic statistics to state of the art approaches such as Variational Bayes Structured treatment of data analysis issues that links different modalities and models Includes a series of appendices and tutorial-style chapters that makes even the most sophisticated approaches accessible
A comprehensive introduction to bootstrap methods in the R programming environment Bootstrap methods provide a powerful approach to statistical data analysis, as they have more general applications than standard parametric methods. An Introduction to Bootstrap Methods with Applications to R explores the practicality of this approach and successfully utilizes R to illustrate applications for the bootstrap and other resampling methods. This book provides a modern introduction to bootstrap methods for readers who do not have an extensive background in advanced mathematics. Emphasis throughout is on the use of bootstrap methods as an exploratory tool, including its value in variable selection and other modeling environments. The authors begin with a description of bootstrap methods and its relationship to other resampling methods, along with an overview of the wide variety of applications of the approach. Subsequent chapters offer coverage of improved confidence set estimation, estimation of error rates in discriminant analysis, and applications to a wide variety of hypothesis testing and estimation problems, including pharmaceutical, genomics, and economics. To inform readers on the limitations of the method, the book also exhibits counterexamples to the consistency of bootstrap methods. An introduction to R programming provides the needed preparation to work with the numerous exercises and applications presented throughout the book. A related website houses the book's R subroutines, and an extensive listing of references provides resources for further study. Discussing the topic at a remarkably practical and accessible level, An Introduction to Bootstrap Methods with Applications to R is an excellent book for introductory courses on bootstrap and resampling methods at the upper-undergraduate and graduate levels. It also serves as an insightful reference for practitioners working with data in engineering, medicine, and the social sciences who would like to acquire a basic understanding of bootstrap methods.
This guide to small area estimation aims to help users compile more reliable granular or disaggregated data in cost-effective ways. It explains small area estimation techniques with examples of how the easily accessible R analytical platform can be used to implement them, particularly to estimate indicators on poverty, employment, and health outcomes. The guide is intended for staff of national statistics offices and for other development practitioners. It aims to help them to develop and implement targeted socioeconomic policies to ensure that the vulnerable segments of societies are not left behind, and to monitor progress toward the Sustainable Development Goals.
During the past decade there has been an explosion in computation and information technology. With it have come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It should be a valuable resource for statisticians and anyone interested in data mining in science or industry. The book’s coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting---the first comprehensive treatment of this topic in any book. This major new edition features many topics not covered in the original, including graphical models, random forests, ensemble methods, least angle regression & path algorithms for the lasso, non-negative matrix factorization, and spectral clustering. There is also a chapter on methods for “wide” data (p bigger than n), including multiple testing and false discovery rates. Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie co-developed much of the statistical modeling software and environment in R/S-PLUS and invented principal curves and surfaces. Tibshirani proposed the lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, projection pursuit and gradient boosting.