Download Free Estimating Life Expectancies Of Highway Assets Guidebook Book in PDF and EPUB Free Download. You can read online Estimating Life Expectancies Of Highway Assets Guidebook and write the review.

Volume 1 addresses how to apply a methodology for estimating the life expectancies of major types of highway system assets. The methodology is designed for use in lifecycle cost analyses that support management decision making. Volume 2 describes the technical issues and data needs associated with estimating asset life expectancies and the practices used in a number of fields--such as the energy and financial industries--to make such estimates.
TRB’s National Cooperative Highway Research Program (NCHRP) Report 713: Estimating Life Expectancies of Highway Assets, Volume 2: Final Report describes the technical issues and data needs associated with estimating asset life expectancies and the practices used in a number of fields—such as the energy and financial industries—to make such estimates.
Aims to encourage transportation agencies to address strategic questions as they confront the task of managing the surface transportation system. Drawn form both national and international knowledge and experience, it provides guidance to State Department of Transportation (DOT) decision makers, as well as county and municipal transportation agencies, to assist them in realizing the most from financial resources now and into the future, preserving highway assets, and providing the service expected by customers. Divided into two parts, Part one focuses on leadership and goal and objective setintg, while Part two is more technically oriented. Appendices include work sheets and case studies.
The purpose of this manual is to provide clear and helpful information for maintaining gravel roads. Very little technical help is available to small agencies that are responsible for managing these roads. Gravel road maintenance has traditionally been "more of an art than a science" and very few formal standards exist. This manual contains guidelines to help answer the questions that arise concerning gravel road maintenance such as: What is enough surface crown? What is too much? What causes corrugation? The information is as nontechnical as possible without sacrificing clear guidelines and instructions on how to do the job right.
Transportation asset management delivers efficient and cost-effective investment decisions to support transportation infrastructure and system usage performance measured in economic, social, health, and environmental terms. It can be applied at national, state, and local levels. This distinctive book addresses asset management for multimodal transportation, taking account of system component interdependency, integration, and risk and uncertainty. It sets out rigorous quantitative and qualitative methods for addressing system goals, performance measures, and needs; data collection and management; performance modeling; project evaluation, selection, and trade-off analysis; innovative financing; and institutional issues. It applies as easily to static traffic and time-dependent or dynamic traffic which exists on a more local level. It is written for transportation planners, engineers, and academia, as well as a growing number of graduate students taking transportation asset management courses.
Life-cycle analysis is a systemic tool for efficient and effective service life management of deteriorating structures. In the last few decades, theoretical and practical approaches for life-cycle performance and cost analysis have been developed extensively due to increased demand on structural safety and service life extension. This book presents the state-of-the-art in life-cycle analysis and maintenance optimization for fatigue-sensitive structures. Both theoretical background and practical applications have been provided for academics, engineers and researchers. Concepts and approaches of life-cycle performance and cost analysis developed in recent decades are presented. The major topics covered include (a) probabilistic concepts of life-cycle performance and cost analysis, (b) inspection, monitoring and maintenance for fatigue cracks, (c) estimation of fatigue crack detection, (d) optimum inspection and monitoring planning, (e) multi-objective life-cycle optimization, and (f) decision making in life-cycle analysis. Life-cycle optimization covered in the book considers probability of fatigue crack detection, fatigue crack damage detection time, maintenance times, probability of failure, service life and total life-cycle cost. For the practical application and integration of recently developed approaches for inspection and maintenance planning, efficient and effective multi-objective optimization and decision making are presented. This book will help engineers engaged in civil and marine structures including students, researchers and practitioners with reliable and cost-effective maintenance planning of fatigue-sensitive structures, and to develop more advanced approaches and techniques in the field of life-cycle maintenance optimization and safety of structures under various aging and deteriorating conditions. Key Features: Provides the state-of-the-art in life-cycle cost analysis and optimization for fatigue-sensitive structures Provides a solid foundation of theoretical backgrounds and practical applications both for academics and practicing engineers and researchers Covers illustrative examples and recent development for optimum service life management Deals with various structures such as bridges and ships subjected to fatigue .
This guide provides bridge related definitions and corresponding commentaries, as well as the framework for a systematic approach to a preventive maintenance program. The goal is to provide guidance on bridge preservation. This guide is intended for Federal, State, and local bridge engineers, area engineers, bridge owners, and bridge preservation practitioners.
This volume contains the papers presented at IALCCE2018, the Sixth International Symposium on Life-Cycle Civil Engineering (IALCCE2018), held in Ghent, Belgium, October 28-31, 2018. It consists of a book of extended abstracts and a USB device with full papers including the Fazlur R. Khan lecture, 8 keynote lectures, and 390 technical papers from all over the world. Contributions relate to design, inspection, assessment, maintenance or optimization in the framework of life-cycle analysis of civil engineering structures and infrastructure systems. Life-cycle aspects that are developed and discussed range from structural safety and durability to sustainability, serviceability, robustness and resilience. Applications relate to buildings, bridges and viaducts, highways and runways, tunnels and underground structures, off-shore and marine structures, dams and hydraulic structures, prefabricated design, infrastructure systems, etc. During the IALCCE2018 conference a particular focus is put on the cross-fertilization between different sub-areas of expertise and the development of an overall vision for life-cycle analysis in civil engineering. The aim of the editors is to provide a valuable source of cutting edge information for anyone interested in life-cycle analysis and assessment in civil engineering, including researchers, practising engineers, consultants, contractors, decision makers and representatives from local authorities.
This primer provides a foundation for understanding the role of economic analysis in highway decision making. It is oriented toward state and local officials who have responsibility for assuring that limited resources get targeted to their best uses and who must publicly account for their decisions. Economic analysis is presented as an integral component of a comprehensive infrastructure management methodology that takes a long-term view of infrastructure performance and cost. The primer encompasses a full range of economic issues, including economic fundamentals, life-cycle cost analysis, benefit-cost analysis, forecasting traffic for benefit calculations, risk analysis and economic impact analysis.