Download Free Estimates Of Vertical Eddy Diffusion Due To Turbulent Layers In The Stratosphere Book in PDF and EPUB Free Download. You can read online Estimates Of Vertical Eddy Diffusion Due To Turbulent Layers In The Stratosphere and write the review.

Vertical transport in the stratosphere occurs by many processes and the question of the relative importance of stratified turbulence is considered in the context of a 'vertical stack model' described in a previous report. The 'vertical stack model' was designed to estimate the effect of intermittent turbulent layers (separated by essentially laminar flow) and it is here examined in some detail. In particular, a number of less obvious implications are discussed and a list of experimental tests of the model is suggested. It is concluded that the rate of turbulence for vertical transport in the stratosphere remains an open question.
A self-consistent method of characterizing vertical turbulent transport by means of a diffusion parameter is demonstrated for the extremely inhomogeneous case of layered turbulence in a stratified fluid. Between the horizontal turbulent layers, horizontal laminar flow is assumed to occur, and molecular diffusion is ignored. The layers are assumed to occur at random heights with random thickness. An analogy is made between the process of random mixing layers and the finite difference representation of the diffusion equation. It is demonstrated by means of a series of digital computer experiments that, in the case where total mixing takes place within the turbulent layers, the diffusion parameter herein developed is the valid one to use (in contrast to 'eddy diffusivity'). The relation between this inhomogeneous diffusion parameter and practical experimental measurements is given. The motive behind this investigation involves vertical transport of pollution in the environment in general and in the stratosphere in particular.
This paper reviews the estimates to date of the vertical 'effective diffusion coefficient' for stratospheric small scale turbulence transport, KB. These estimates range (in order of magnitude) from 1.0 sq. meter/s to 0.01 sq. meter/s, that is to say from a value which would make turbulence a dominant factor in stratospheric transport to a value which would make it totally insignificant. Such a large range implies much ignorance in this subject. The various techniques are closely examined and the unanswered experimental questions are exhibited. The conclusion is reached that more experimental work needs to be done before one has a reliable estimate for KB.
This report is a tutorial on the effects of atmospheric turbulence upon systems which rely upon the propagation of LASER beams. In addition to providing a simplified presentation of turbulence theory and optical effects, it describes the state of the art of the new technique of radiosonde estimation of index of refraction fluctuations. Suggestions are given for future research which will help to answer current Air Force needs. The feasibility of some laser systems will depend upon the value of r0, the coherence length (which is related to “C2n” which in turn is related to the degree of turbulence). At present, the statistics of “r0” are inadequate.