Download Free Essentials Of Probability Theory For Statisticians Book in PDF and EPUB Free Download. You can read online Essentials Of Probability Theory For Statisticians and write the review.

Essentials of Probability Theory for Statisticians provides graduate students with a rigorous treatment of probability theory, with an emphasis on results central to theoretical statistics. It presents classical probability theory motivated with illustrative examples in biostatistics, such as outlier tests, monitoring clinical trials, and using adaptive methods to make design changes based on accumulating data. The authors explain different methods of proofs and show how they are useful for establishing classic probability results. After building a foundation in probability, the text intersperses examples that make seemingly esoteric mathematical constructs more intuitive. These examples elucidate essential elements in definitions and conditions in theorems. In addition, counterexamples further clarify nuances in meaning and expose common fallacies in logic. This text encourages students in statistics and biostatistics to think carefully about probability. It gives them the rigorous foundation necessary to provide valid proofs and avoid paradoxes and nonsensical conclusions.
The choice of examples used in this text clearly illustrate its use for a one-year graduate course. The material to be presented in the classroom constitutes a little more than half the text, while the rest of the text provides background, offers different routes that could be pursued in the classroom, as well as additional material that is appropriate for self-study. Of particular interest is a presentation of the major central limit theorems via Steins method either prior to or alternative to a characteristic function presentation. Additionally, there is considerable emphasis placed on the quantile function as well as the distribution function, with both the bootstrap and trimming presented. The section on martingales covers censored data martingales.
Approximately 1,000 problems — with answers and solutions included at the back of the book — illustrate such topics as random events, random variables, limit theorems, Markov processes, and much more.
This textbook differs from others in the field in that it has been prepared very much with students and their needs in mind, having been classroom tested over many years. It is a true “learner’s book” made for students who require a deeper understanding of probability and statistics. It presents the fundamentals of the subject along with concepts of probabilistic modelling, and the process of model selection, verification and analysis. Furthermore, the inclusion of more than 100 examples and 200 exercises (carefully selected from a wide range of topics), along with a solutions manual for instructors, means that this text is of real value to students and lecturers across a range of engineering disciplines. Key features: Presents the fundamentals in probability and statistics along with relevant applications. Explains the concept of probabilistic modelling and the process of model selection, verification and analysis. Definitions and theorems are carefully stated and topics rigorously treated. Includes a chapter on regression analysis. Covers design of experiments. Demonstrates practical problem solving throughout the book with numerous examples and exercises purposely selected from a variety of engineering fields. Includes an accompanying online Solutions Manual for instructors containing complete step-by-step solutions to all problems.
Suitable for self study Use real examples and real data sets that will be familiar to the audience Introduction to the bootstrap is included – this is a modern method missing in many other books
This book provides a versatile and lucid treatment of classic as well as modern probability theory, while integrating them with core topics in statistical theory and also some key tools in machine learning. It is written in an extremely accessible style, with elaborate motivating discussions and numerous worked out examples and exercises. The book has 20 chapters on a wide range of topics, 423 worked out examples, and 808 exercises. It is unique in its unification of probability and statistics, its coverage and its superb exercise sets, detailed bibliography, and in its substantive treatment of many topics of current importance. This book can be used as a text for a year long graduate course in statistics, computer science, or mathematics, for self-study, and as an invaluable research reference on probabiliity and its applications. Particularly worth mentioning are the treatments of distribution theory, asymptotics, simulation and Markov Chain Monte Carlo, Markov chains and martingales, Gaussian processes, VC theory, probability metrics, large deviations, bootstrap, the EM algorithm, confidence intervals, maximum likelihood and Bayes estimates, exponential families, kernels, and Hilbert spaces, and a self contained complete review of univariate probability.
This text combines the topics generally found in main-stream elementary statistics books with the essentials of the underlying theory. The book begins with an axiomatic treatment of probability followed by chapters on discrete and continuous random variables and their associated distributions. It then introduces basic statistical concepts including summarizing data and interval parameter estimation, stressing the connection between probability and statistics. Final chapters introduce hypothesis testing, regression, and non-parametric techniques. All chapters provide a balance between conceptual understanding and theoretical understanding of the topics at hand.
This introduction can be used, at the beginning graduate level, for a one-semester course on probability theory or for self-direction without benefit of a formal course; the measure theory needed is developed in the text. It will also be useful for students and teachers in related areas such as finance theory, electrical engineering, and operations research. The text covers the essentials in a directed and lean way with 28 short chapters, and assumes only an undergraduate background in mathematics. Readers are taken right up to a knowledge of the basics of Martingale Theory, and the interested student will be ready to continue with the study of more advanced topics, such as Brownian Motion and Ito Calculus, or Statistical Inference.
This introduction to more advanced courses in probability and real analysis emphasizes the probabilistic way of thinking, rather than measure-theoretic concepts. Geared toward advanced undergraduates and graduate students, its sole prerequisite is calculus. Taking statistics as its major field of application, the text opens with a review of basic concepts, advancing to surveys of random variables, the properties of expectation, conditional probability and expectation, and characteristic functions. Subsequent topics include infinite sequences of random variables, Markov chains, and an introduction to statistics. Complete solutions to some of the problems appear at the end of the book.
Essentials of Probability Theory for Statisticians provides graduate students with a rigorous treatment of probability theory, with an emphasis on results central to theoretical statistics. It presents classical probability theory motivated with illustrative examples in biostatistics, such as outlier tests, monitoring clinical trials, and using adaptive methods to make design changes based on accumulating data. The authors explain different methods of proofs and show how they are useful for establishing classic probability results. After building a foundation in probability, the text intersperses examples that make seemingly esoteric mathematical constructs more intuitive. These examples elucidate essential elements in definitions and conditions in theorems. In addition, counterexamples further clarify nuances in meaning and expose common fallacies in logic. This text encourages students in statistics and biostatistics to think carefully about probability. It gives them the rigorous foundation necessary to provide valid proofs and avoid paradoxes and nonsensical conclusions.