Download Free Essentials Of Optoelectronics With Applications Book in PDF and EPUB Free Download. You can read online Essentials Of Optoelectronics With Applications and write the review.

Essentials of Optoelectronics offers a comprehensive treatment of the optical and electronic principles that form the foundation of optoelectronics. Along with the fundamentals, the material includes detailed coverage of lasers, waveguides (including optical fibers), detectors, nonlinear optics, optical signal processing, and optical computing. In a self-contained presentation that foregoes detailed mathematical analysis in favor of building deeper insight, the author imparts a fundamental understanding of the subject and its applications. He focuses on physical ideas, demonstrates their interdependence, and develops them to explain the more complex phenomena. Professor Rogers reinforces and enlivens the concepts with detailed examples of current applications ranging from antireflective coatings and audio CDs to holography and coherent detection in optical fibre communications systems. With exercise sets, references, and suggestions for further reading in each chapter, Essentials of Optoelectronics forms an outstanding introductory text that helps interest, enlighten, and stimulate students to further pursue the subject.
With emphasis on the physical and engineering principles, this book provides a comprehensive and highly accessible treatment of modern lasers and optoelectronics. Divided into four parts, it explains laser fundamentals, types of lasers, laser electronics & optoelectronics, and laser applications, covering each of the topics in their entirety, from basic fundamentals to advanced concepts. Key features include: exploration of technological and application-related aspects of lasers and optoelectronics, detailing both existing and emerging applications in industry, medical diagnostics and therapeutics, scientific studies and Defence. simple explanation of the concepts and essential information on electronics and circuitry related to laser systems illustration of numerous solved and unsolved problems, practical examples, chapter summaries, self-evaluation exercises, and a comprehensive list of references for further reading This volume is a valuable design guide for R&D engineers and scientists engaged in design and development of lasers and optoelectronics systems, and technicians in their operation and maintenance. The tutorial approach serves as a useful reference for under-graduate and graduate students of lasers and optoelectronics, also PhD students in electronics, optoelectronics and physics.
The importance of photonics in science and engineering is widely recognized and will continue to increase through the foreseeable future. In particular, applications in telecommunications, medicine, astronomy, industrial sensing, optical computing and signal processing continue to become more diverse. Essentials of Photonics, Second Edition describes the entire range of photonic principles and techniques in detail. Previously named Essentials of Optoelectronics, this newly named second edition of a bestseller felects changes that have occurred in this field. The book presents a new approach that concentrates on the physical principbestles, demonstrating their interdependence, and developing them to explain more complex phenomena. It gives insight into the underlying physical processes in a way that is readable and easy to follow, as well as entirely self-contained. Written by an author with many years of experience in teaching and research, this book includes a detailed treatment of lasers, waveguides (including optical fibres), modulators, detectors, non-linear optics and optical signal processing. This new edition is brought up-to-date with additional sections on photonic crystal fibres, distributed optical-fibre sensing, and the latest developments in optical-fibre communications.
This book provides in-depth knowledge about the fundamental physical properties of bulk and low dimensional semiconductors (LDS). It also explains their applications to optoelectronic devices. The book incorporates two major themes. The first theme, starts from the fundamental principles governing the classification of solids according to their electronic properties and leads to a detailed analysis of electronic band structure and electronic transport in solids. It then focuses on the electronic transport and optical properties of semiconductor compounds, size quantization and the analysis of abrupt p-n junctions where a full analysis of the fundamental properties of intrinsic and doped semiconductors is given. The second theme is device-oriented. It aims to provide the reader with understanding of the design, fabrication and operation of optoelectronic devices based on novel semiconductor materials, such as high-speed photo detectors, light emitting diodes, multi-mode and single-mode lasers and high efficiency solar cells. The book appeals to researchers and high-level undergraduate students.
This book provides in-depth knowledge about the fundamental physical properties of bulk and low dimensional semiconductors (LDS). It also explains their applications to optoelectronic devices. The book incorporates two major themes. The first theme, starts from the fundamental principles governing the classification of solids according to their electronic properties and leads to a detailed analysis of electronic band structure and electronic transport in solids. It then focuses on the electronic transport and optical properties of semiconductor compounds, size quantization and the analysis of abrupt p-n junctions where a full analysis of the fundamental properties of intrinsic and doped semiconductors is given. The second theme is device-oriented. It aims to provide the reader with understanding of the design, fabrication and operation of optoelectronic devices based on novel semiconductor materials, such as high-speed photo detectors, light emitting diodes, multi-mode and single-mode lasers and high efficiency solar cells. The book appeals to researchers and high-level undergraduate students.
Organized as a mini-encyclopedia of infrared optoelectronic applications, this long awaited new edition of an industry standard updates and expands on the groundbreaking work of its predecessor. Pioneering experts, responsible for many advancements in the field, provide engineers with a fundamental understanding of semiconductor physics and the technical information needed to design infrared optoelectronic devices. Fully revised to reflect current developments in the field, Optoelectronics: Infrared-Visible-Ultraviolet Devices and Applications, Second Edition reviews relevant semiconductor fundamentals, including device physics, from an optoelectronic industry perspective. This easy-reading text provides a practical engineering introduction to optoelectronic LEDs and silicon sensor technology for the infrared, visible, and ultraviolet portion of the electromagnetic spectrum. Utilizing a practical and efficient engineering approach throughout, the text supplies design engineers and technical management with quick and uncluttered access to the technical information needed to design new systems.
Comprehensive coverage of organic electronics, including fundamental theory, basic properties, characterization methods, device physics, and future trends Organic semiconductor materials have vast commercial potential for a wide range of applications, from self-emitting OLED displays and solid-state lighting to plastic electronics and organic solar cells. As research in organic optoelectronic devices continues to expand at an unprecedented rate, organic semiconductors are being applied to flexible displays, biosensors, and other cost-effective green devices in ways not possible with conventional inorganic semiconductors. Organic Semiconductors for Optoelectronics is an up-to-date review of the both the fundamental theory and latest research and development advances in organic semiconductors. Featuring contributions from an international team of experts, this comprehensive volume covers basic properties of organic semiconductors, characterization techniques, device physics, and future trends in organic device development. Detailed chapters provide key information on the device physics of organic field-effect transistors, organic light-emitting diodes, organic solar cells, organic photosensors, and more. This authoritative resource: Provides a clear understanding of the optoelectronic properties of organic semiconductors and their influence to overall device performance Explains the theories behind relevant mechanisms in organic semiconducting materials and in organic devices Discusses current and future trends and challenges in the development of organic optoelectronic devices Reviews electronic properties, device mechanisms, and characterization techniques of organic semiconducting materials Covers theoretical concepts of optical properties of organic semiconductors including fluorescent, phosphorescent, and thermally-assisted delayed fluorescent emitters An important new addition to the Wiley Series in Materials for Electronic & Optoelectronic Applications, Organic Semiconductors for Optoelectronics bridges the gap between advanced books and undergraduate textbooks on semiconductor physics and solid-state physics. It is essential reading for academic researchers, graduate students, and industry professionals involved in organic electronics, materials science, thin film devices, and optoelectronics research and development.
The first true introduction to semiconductor optoelectronic devices, this book provides an accessible, well-organized overview of optoelectric devices that emphasizes basic principles.Coverage begins with an optional review of key concepts—such as properties of compound semiconductor, quantum mechanics, semiconductor statistics, carrier transport properties, optical processes, and junction theory—then progress gradually through more advanced topics. The Second Edition has been both updated and expanded to include the recent developments in the field.