Download Free Essential Thermodynamics Book in PDF and EPUB Free Download. You can read online Essential Thermodynamics and write the review.

Essentials of Thermodynamics offers a fresh perspective on classical thermodynamics and its explanation of natural phenomena. It combines fundamental principles with applications to offer an integrated resource for students, teachers and experts alike. The essence of classic texts has been distilled to give a balanced and in-depth treatment, including a detailed history of ideas which explains how thermodynamics evolved without knowledge of the underlying atomic structure of matter. The principles are illustrated by a vast range of applications, such as osmotic pressure, how solids melt and liquids boil, the incredible race to reach absolute zero, and the modern theme of the renormalization group. Topics are handled using a variety of techniques, which helps readers see how concepts such as entropy and free energy can be applied to many situations, and in diverse ways. The book has a large number of solved examples and problems in each chapter, as well as a carefully selected guide to further reading. The treatment of traditional topics like the three laws of thermodynamics, Carnot cycles, Clapeyron equation, phase equilibria, and dilute solutions is considerably more detailed than usual. For example, the chapter on Carnot cycles discusses exotic cases like the photon cycle along with more practical ones like the Otto, Diesel and Rankine cycles. There is a chapter on critical phenomena that is modern and yet highly pedagogical and contains a first principles calculation of the critical exponents of Van der Waals systems. Topics like entropy constants, surface thermodynamics, and superconducting phase transitions are explained in depth while maintaining accessibility for different readers.
This textbook covers basic principles of equilibrium behavior for systems of interest to chemical engineering, including elementary microscopic concepts. A strong emphasis is placed on fundamentals: energy conservation in open and closed systems (first law), temperature, entropy and reversibility (second law), fundamental equations, and criteria for equilibrium and stability. These concepts are then applied to the analysis of energy conversion processes, mixing, phase equilibria, and chemical reactions.
This book is a concise, readable, yet authoritative primer of basic classic thermodynamics. Many students have difficulty with thermodynamics, and find at some stage of their careers in academia or industry that they have forgotten what they learned, or never really understood these fundamental physical laws. As the title of the book suggests, the author has distilled the subject down to its essentials, using many simple and clear illustrations, instructive examples, and key equations and simple derivations to elucidate concepts. Based on many years of teaching experience at the undergraduate and graduate levels, “Essential Classical Thermodynamics” is intended to provide a positive learning experience, and to empower the reader to explore the many possibilities for applying thermodynamics in other fields of science, engineering, and even economics where energy plays a central role. Thermodynamics is fun when you understand it!
A thorough exploration of the universal principles of thermodynamics and statistical mechanics, this volume takes an applications-oriented approach to a multitude of situations arising in physics and engineering. 1987 edition.
This Book Titled Basic Thermodynamics Makes An Attempt To Cover The Portions Keeping In View Of The Syllabus For Iiird Semester B.E., Mechanical, Prescribed By Visveswaraiah Technological University. This Book Can Also Be Useful For Students Of Other Engineering Disciplines Like B.E. In Industrial Production, Industrial Engineering Management, Automobile, Diploma In Mechanical And Ip, Iem And Automobile Engineering, Amie Etc. The Whole Book Is Written With Precise Explanations, Neat Sketches And Good Number Of Numericals. The Numerical Problems From Vtu Question Papers Have Also Been Updated.
Although the basic theories of thermodynamics are adequately covered by a number of existing texts, there is little literature that addresses more advanced topics. In this comprehensive work the author redresses this balance, drawing on his twenty-five years of experience of teaching thermodynamics at undergraduate and postgraduate level, to produce a definitive text to cover thoroughly, advanced syllabuses. The book introduces the basic concepts which apply over the whole range of new technologies, considering: a new approach to cycles, enabling their irreversibility to be taken into account; a detailed study of combustion to show how the chemical energy in a fuel is converted into thermal energy and emissions; an analysis of fuel cells to give an understanding of the direct conversion of chemical energy to electrical power; a detailed study of property relationships to enable more sophisticated analyses to be made of both high and low temperature plant and irreversible thermodynamics, whose principles might hold a key to new ways of efficiently covering energy to power (e.g. solar energy, fuel cells). Worked examples are included in most of the chapters, followed by exercises with solutions. By developing thermodynamics from an explicitly equilibrium perspective, showing how all systems attempt to reach a state of equilibrium, and the effects of these systems when they cannot, the result is an unparalleled insight into the more advanced considerations when converting any form of energy into power, that will prove invaluable to students and professional engineers of all disciplines.
Thermodynamics is the very basic science to appreciate all engineering disciplines, more particularly the chemical, metallurgical and mechanical engineering in terms of the efficiencies in various related operations that is why metallurgical thermodynamics has been developed specifically to understand the metallurgical engineering processes and their energy efficiencies. Any change is driven by the potential driving it. Thermodynamics is the tool to appreciate that potential and to assess the related energy efficiency. Hence thermodynamics is the basic tool that helps to assess finally the economics of any metallurgical process. The more one understands it the better. The present book attempts to explain the very basic thermodynamic concepts underlying metallurgical engineering operations and therefore the related economics.
Provides an essential treatment of the subject and rigorous methods to solve all kinds of energy engineering problems.
Thermodynamics is the much abused slave of many masters • physicists who love the totally impractical Carnot process, • mechanical engineers who design power stations and refrigerators, • chemists who are successfully synthesizing ammonia and are puzzled by photosynthesis, • meteorologists who calculate cloud bases and predict föhn, boraccia and scirocco, • physico-chemists who vulcanize rubber and build fuel cells, • chemical engineers who rectify natural gas and distil f- mented potato juice, • metallurgists who improve steels and harden surfaces, • - trition counselors who recommend a proper intake of calories, • mechanics who adjust heat exchangers, • architects who construe – and often misconstrue – ch- neys, • biologists who marvel at the height of trees, • air conditioning engineers who design saunas and the ventilation of air plane cabins, • rocket engineers who create supersonic flows, et cetera. Not all of these professional groups need the full depth and breadth of ther- dynamics. For some it is enough to consider a well-stirred tank, for others a s- tionary nozzle flow is essential, and yet others are well-served with the partial d- ferential equation of heat conduction. It is therefore natural that thermodynamics is prone to mutilation; different group-specific meta-thermodynamics’ have emerged which serve the interest of the groups under most circumstances and leave out aspects that are not often needed in their fields.
Quantum Thermodynamics is a novel research field which explores the emergence of thermodynamics from quantum theory and addresses thermodynamic phenomena which appear in finite-size, non-equilibrium and finite-time contexts. Blending together elements from open quantum systems, statistical mechanics, quantum many-body physics, and quantum information theory, it pinpoints thermodynamic advantages and barriers emerging from genuinely quantum properties such as quantum coherence and correlations. Owing to recent experimental efforts, the field is moving quickly towards practical applications, such as nano-scale heat devices, or thermodynamically optimised protocols for emergent quantum technologies. Starting from the basics, the present volume reviews some of the most recent developments, as well as some of the most important open problems in quantum thermodynamics. The self-contained chapters provide concise and topical introductions to researchers who are new to the field. Experts will find them useful as a reference for the current state-of-the-art. In six sections the book covers topics such as quantum heat engines and refrigerators, fluctuation theorems, the emergence of thermodynamic equilibrium, thermodynamics of strongly coupled systems, as well as various information theoretic approaches including Landauer's principle and thermal operations. It concludes with a section dedicated to recent quantum thermodynamics experiments and experimental prospects on a variety of platforms ranging from cold atoms to photonic systems, and NV centres.