Download Free Essential Math For Ai Book in PDF and EPUB Free Download. You can read online Essential Math For Ai and write the review.

Companies are scrambling to integrate AI into their systems and operations. But to build truly successful solutions, you need a firm grasp of the underlying mathematics. This accessible guide walks you through the math necessary to thrive in the AI field such as focusing on real-world applications rather than dense academic theory. Engineers, data scientists, and students alike will examine mathematical topics critical for AI--including regression, neural networks, optimization, backpropagation, convolution, Markov chains, and more--through popular applications such as computer vision, natural language processing, and automated systems. And supplementary Jupyter notebooks shed light on examples with Python code and visualizations. Whether you're just beginning your career or have years of experience, this book gives you the foundation necessary to dive deeper in the field. Understand the underlying mathematics powering AI systems, including generative adversarial networks, random graphs, large random matrices, mathematical logic, optimal control, and more Learn how to adapt mathematical methods to different applications from completely different fields Gain the mathematical fluency to interpret and explain how AI systems arrive at their decisions
The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.
Essential Mathematics for Games and Interactive Applications, 2nd edition presents the core mathematics necessary for sophisticated 3D graphics and interactive physical simulations. The book begins with linear algebra and matrix multiplication and expands on this foundation to cover such topics as color and lighting, interpolation, animation and basic game physics. Essential Mathematics focuses on the issues of 3D game development important to programmers and includes optimization guidance throughout. The new edition Windows code will now use Visual Studio.NET. There will also be DirectX support provided, along with OpenGL - due to its cross-platform nature. Programmers will find more concrete examples included in this edition, as well as additional information on tuning, optimization and robustness. The book has a companion CD-ROM with exercises and a test bank for the academic secondary market, and for main market: code examples built around a shared code base, including a math library covering all the topics presented in the book, a core vector/matrix math engine, and libraries to support basic 3D rendering and interaction.
Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala
Math for Deep Learning provides the essential math you need to understand deep learning discussions, explore more complex implementations, and better use the deep learning toolkits. With Math for Deep Learning, you'll learn the essential mathematics used by and as a background for deep learning. You’ll work through Python examples to learn key deep learning related topics in probability, statistics, linear algebra, differential calculus, and matrix calculus as well as how to implement data flow in a neural network, backpropagation, and gradient descent. You’ll also use Python to work through the mathematics that underlies those algorithms and even build a fully-functional neural network. In addition you’ll find coverage of gradient descent including variations commonly used by the deep learning community: SGD, Adam, RMSprop, and Adagrad/Adadelta.
This textbook introduces linear algebra and optimization in the context of machine learning. Examples and exercises are provided throughout the book. A solution manual for the exercises at the end of each chapter is available to teaching instructors. This textbook targets graduate level students and professors in computer science, mathematics and data science. Advanced undergraduate students can also use this textbook. The chapters for this textbook are organized as follows: 1. Linear algebra and its applications: The chapters focus on the basics of linear algebra together with their common applications to singular value decomposition, matrix factorization, similarity matrices (kernel methods), and graph analysis. Numerous machine learning applications have been used as examples, such as spectral clustering, kernel-based classification, and outlier detection. The tight integration of linear algebra methods with examples from machine learning differentiates this book from generic volumes on linear algebra. The focus is clearly on the most relevant aspects of linear algebra for machine learning and to teach readers how to apply these concepts. 2. Optimization and its applications: Much of machine learning is posed as an optimization problem in which we try to maximize the accuracy of regression and classification models. The “parent problem” of optimization-centric machine learning is least-squares regression. Interestingly, this problem arises in both linear algebra and optimization, and is one of the key connecting problems of the two fields. Least-squares regression is also the starting point for support vector machines, logistic regression, and recommender systems. Furthermore, the methods for dimensionality reduction and matrix factorization also require the development of optimization methods. A general view of optimization in computational graphs is discussed together with its applications to back propagation in neural networks. A frequent challenge faced by beginners in machine learning is the extensive background required in linear algebra and optimization. One problem is that the existing linear algebra and optimization courses are not specific to machine learning; therefore, one would typically have to complete more course material than is necessary to pick up machine learning. Furthermore, certain types of ideas and tricks from optimization and linear algebra recur more frequently in machine learning than other application-centric settings. Therefore, there is significant value in developing a view of linear algebra and optimization that is better suited to the specific perspective of machine learning.
Provides structure and guidance to the teacher by means of speed drills, review exercises, teacher tips, word problems and new material for each day.
Linear algebra and the foundations of deep learning, together at last! From Professor Gilbert Strang, acclaimed author of Introduction to Linear Algebra, comes Linear Algebra and Learning from Data, the first textbook that teaches linear algebra together with deep learning and neural nets. This readable yet rigorous textbook contains a complete course in the linear algebra and related mathematics that students need to know to get to grips with learning from data. Included are: the four fundamental subspaces, singular value decompositions, special matrices, large matrix computation techniques, compressed sensing, probability and statistics, optimization, the architecture of neural nets, stochastic gradient descent and backpropagation.
Dive into the "AI Mastery Trilogy," the ultimate collection for professionals seeking to conquer the world of artificial intelligence (AI). This 3-in-1 compendium is meticulously crafted to guide you from the foundational principles of AI to the intricate mathematical frameworks and practical coding applications that will catapult your expertise to new heights. Book 1: "AI Basics for Managers" by Andrew Hinton is your gateway to understanding and implementing AI in business. It equips managers with the knowledge to navigate the AI landscape, identify opportunities, and lead their organizations toward a future of innovation and growth. Book 2: "Essential Math for AI" demystifies the mathematical backbone of AI, offering a deep dive into the core concepts that fuel AI systems. From linear algebra to game theory, this book is a treasure trove for anyone eager to grasp the numerical and logical foundations that underpin AI's transformative power. Book 3: "AI and ML for Coders" is the hands-on manual for coders ready to harness AI and machine learning in their projects. It provides a comprehensive overview of AI and ML technologies, practical coding advice, and ethical considerations, ensuring you're well-equipped to create cutting-edge, responsible AI applications. The "AI Mastery Trilogy" is more than just a set of books; it's a comprehensive learning journey designed to empower business leaders, mathematicians, and coders alike. Whether you're looking to lead, understand, or build the future of AI, this collection is an indispensable resource for mastering the art and science of one of the most exciting fields in technology. Embrace the AI revolution and secure your copy of the "AI Mastery Trilogy" today!
In the swiftly evolving realm of technology, the challenge of classical computing's constraints in handling intricate problems has become pronounced. While classical computers excel in many areas, they struggle with complex issues in cryptography, optimization, and molecular simulation. Addressing these escalating challenges requires a disruptive solution to push the boundaries of computation and innovation. Principles and Applications of Quantum Computing Using Essential Math, authored by A. Daniel, M. Arvindhan, Kiranmai Bellam, and N. Krishnaraj. This guide pioneers the transformative potential of quantum computing by seamlessly blending rigorous mathematics with quantum theory. It equips scholars, researchers, and aspiring technologists with insights to grasp and harness quantum computing's capabilities. By delving into quantum gates, algorithms, and error correction techniques, the book demystifies quantum computing, inviting exploration of quantum machine learning, cryptography, and the dynamic interplay between classical and quantum computing. As the quantum landscape expands, this book acts as a vital companion, navigating readers through the converging realms of industry, academia, and innovation. Principles and Applications of Quantum Computing Using Essential Math arrives as a timely answer to the limitations of classical computing, providing scholars with an essential roadmap to navigate the quantum technology landscape. With its clear explanations, practical applications, and forward-looking perspectives, this book serves as an indispensable tool for unraveling quantum computing's mysteries and driving innovation into uncharted domains.