Download Free Essential Ion Channel Methods Book in PDF and EPUB Free Download. You can read online Essential Ion Channel Methods and write the review.

The rapid growth of interest and research activity in ion channels is indicative of their fundamental importance in the maintenance of the living state. This volume was prepared with a view toward providing a sampling of the range of molecular and physical methods that are significant for the study of ion channels. As part of the Reliable Lab Solutions series, Essential Ion Channel Methods brings together chapters from volumes 293 and 294 of Methods in Enzymology. The chapters have been selected by the editor and updated, when possible, by their original authors to include new research and references. The result is a set of chapters which make use of graphics, comparisons to other methods, and provide tricks and approaches that make it possible to adapt methods to other systems. Methods are presented in a fashion that allows their replication by individuals new to the field, yet providing valuable information for seasoned investigators. Highlights top downloaded and cited chapters, authored by pioneers in the field and enhanced with graphics and easy to follow methods Loaded with detailed protocols developed and used by leaders in the field Refines, organizes and updates popular methods from one of our top selling series, Methods in Enzymology
The Textbook of Ion Channels is a set of three volumes providing a wide-ranging reference source on ion channels for students, instructors and researchers. Ion channels are membrane proteins that control the electrical properties of neurons and cardiac cells; mediate the detection and response to sensory stimuli like light, sound, odor, and taste; and regulate the response to physical stimuli like temperature and pressure. In non-excitable tissues, ion channels are instrumental for the regulation of basic salt balance that is critical for homeostasis. Ion channels are located at the surface membrane of cells, giving them the unique ability to communicate with the environment, as well as the membrane of intracellular organelles, allowing them to regulate internal homeostasis. Ion channels are fundamentally important for human health and diseases, and are important targets for pharmaceuticals in mental illness, heart disease, anesthesia, pain and other clinical applications. The modern methods used in their study are powerful and diverse, ranging from single ion-channel measurement techniques to models of ion channel diseases in animals, and human clinical trials for ion channel drugs. Volume I, Part 1 covers fundamental topics such as the basic principles of ion permeation and selectivity, voltage-dependent, ligand-dependent, and mechano-dependent ion channel activation mechanisms, the mechanisms for ion channel desensitization and inactivation, and basic ion channel pharmacology and inhibition. Volume I, Part 2 offers a practical guide of cardinal methods for researching ion channels, including heterologous expression and voltage-clamp and patch-clamp electrophysiology; isolation of native currents using patch clamping; modeling ion channel gating, structures, and its dynamics; crystallography and cryo-electron microscopy; fluorescence and paramagnetic resonance spectroscopy methods; and genetics approaches in model organisms. All three volumes give the reader an introduction to fundamental concepts needed to understand the mechanism of ion channels; a guide to the technical aspects of ion channel research; a modern guide to the properties of major ion channel families; and includes coverage of key examples of regulatory, physiological and disease roles for ion channels.
This Methods in Molecular Biology book offers strategies and protocols for studying a large group of proteins that form ionic channels in the plasma membrane and intracellular membranes of cells. Includes step-by-step protocols, materials lists, tips and more."
The New Benchmark for Understanding the Latest Developments of Ion ChannelsIon channels control the electrical properties of neurons and cardiac cells, mediate the detection and response to sensory stimuli, and regulate the response to physical stimuli. They can often interact with the cellular environment due to their location at the surface of ce
The New Benchmark for Understanding the Latest Developments of Ion Channels Ion channels control the electrical properties of neurons and cardiac cells, mediate the detection and response to sensory stimuli, and regulate the response to physical stimuli. They can often interact with the cellular environment due to their location at the surface of cells. In nonexcitable tissues, they also help regulate basic salt balance critical for homeostasis. All of these features make ion channels important targets for pharmaceuticals. Handbook of Ion Channels illustrates the fundamental importance of these membrane proteins to human health and disease. Renowned researchers from around the world introduce the technical aspects of ion channel research, provide a modern guide to the properties of major ion channels, and present powerful methods for modeling ion channel diseases and performing clinical trials for ion channel drugs. Conveniently divided into five parts, the handbook first describes the basic concepts of permeation and gating mechanisms, balancing classic theories and the latest developments. The second part covers the principles and practical issues of both traditional and new ion channel techniques and their applications to channel research. The third part organizes the material to follow the superfamilies of ion channels. This part focuses on the classification, properties, gating mechanisms, function, and pharmacology of established and novel channel types. The fourth part addresses ion channel regulation as well as trafficking and distribution. The final part examines several ion channel-related diseases, discussing genetics, mechanisms, and pharmaceutical advances.
The Textbook of Ion Channels is a set of three volumes that provides a wide-ranging reference source on ion channels for students, instructors and researchers. Ion channels are mem- brane proteins that control the electrical properties of neurons and cardiac cells; medi- ate the detection and response to sensory stimuli like light, sound, odor, and taste; and regulate the response to physical stimuli like temperature and pressure. In non-excitable tissues, ion channels are instrumental for the regulation of basic salt balance that is critical for homeostasis. Ion channels are located at the surface membrane of cells, giving them the unique ability to communicate with the environment, as well as the membrane of intracellular organelles, allowing them to regulate internal homeostasis. Ion channels are fundamentally important for human health and diseases, and are important targets for pharmaceuticals in mental illness, heart disease, anesthesia, pain and other clinical appli- cations. The modern methods used in their study are powerful and diverse, ranging from single ion-channel measurement techniques to models of ion channel diseases in animals, and human clinical trials for ion channel drugs. Volume III includes coverage of key ion channel regulators and their mechanisms, the role of ion channels working in concert in selected physiological systems, and examples of ion channel mutations and dysfunction in a selection of diseases. Chapters on ion channel regulation include splice variants, calcium–calmodulin regulation, regulation by G pro- teins, and lipids. A selection of ion channels in physiological systems includes ion chan- nels of the heart, ion channels in immune cells and their role in pancreatic beta cells and regulation of insulin secretion, and the role of channels in sperm and eggs. While disease mechanisms are integrated into the chapters of Volume II, Volume III offers special consid- eration of ion channels in epilepsy, cystic fibrosis and pain syndromes. All three volumes give the reader an introduction to fundamental concepts needed to understand the mechanism of ion channels, a guide to the technical aspects of ion channel research, offer a modern guide to the properties of major ion channel families, and includecoverage of key examples of regulatory, physiological, and disease roles for ion channels.
Filling the gap created over the past five years, during which many new techniques have entered the market, this book is directed at both the new and the experienced ion channel researcher wishing to learn more about the considerations and methods for studying recombinant ion channels. These latest developments are covered here for the first time, contributed by editors and authors working for major pharmaceutical companies and who routinely apply these techniques in their daily work. The first three chapters cover the use of the Xenopus oocyte expression system for structure-function studies, from basic approaches for manipulating ion channel cDNAs to more specialized but powerful techniques. This is followed by reviews of strategies and methodologies available for expressing channels in mammalian cells and for their analysis by patch-clamp electrophysiology. Chapters 6 to 8 review the latest methodologies for ion channel drug discovery, including high throughput screening using fluorescence and luminescence, as well as automated planar array electrophysiology. The remaining two chapters focus on approaches for determining ion channel crystal structures and on computational approaches to understanding channel mechanisms at atomic resolution. Rather than provide detailed protocols, indicated by references in each chapter, the authors provide a comprehensive and easily accessible overview of the techniques involved, reviewing underlying principles and providing working guidelines as well as an understanding of the key theoretical and practical considerations associated with each topic. In each case, this practical advice is illustrated by real life examples, taken either from the author's own experience or from key examples in the literature, providing valuable practical hints not found elsewhere. The result is a compendium of practical ion channel information that will prove a valuable resource to academic and industrial workers alike.
Ion channels are membrane proteins that act as gated pathways for the movement of ions across cell membranes. They play essential roles in the physiology of all cells. In recent years, an ever-increasing number of human and animal diseases have been found to result from defects in ion channel function. Most of these diseases arise from mutations in the genes encoding ion channel proteins, and they are now referred to as the channelopathies. Ion Channels and Disease provides an informative and up-to-date account of our present understanding of ion channels and the molecular basis of ion channel diseases. It includes a basic introduction to the relevant aspects of molecular biology and biophysics and a brief description of the principal methods used to study channelopathies. For each channel, the relationship between its molecular structure and its functional properties is discussed and ways in which genetic mutations produce the disease phenotype are considered. This book is intended for research workers and clinicians, as well as graduates and advanced undergraduates. The text is clear and lively and assumes little knowledge, yet it takes the reader to frontiers of what is currently known about this most exciting and medically important area of physiology. Introduces the relevant aspects of molecular biology and biophysics Describes the principal methods used to study channelopathies Considers single classes of ion channels with summaries of the physiological role, subunit composition, molecular structure and chromosomal location, plus the relationship between channel structure and function Looks at those diseases associated with defective channel structures and regulation, including mutations affecting channel function and to what extent this change in channel function can account for the clinical phenotype
The Textbook of Ion Channels is a set of three volumes providing a wide-ranging reference source on ion channels for students, instructors, and researchers. Ion channels are membrane proteins that control the electrical properties of neurons and cardiac cells, mediate the detection and response to sensory stimuli like light, sound, odor, and taste, and regulate the response to physical stimuli like temperature and pressure. In non-excitable tissues, ion channels are instrumental for the regulation of basic salt balance that is critical for homeostasis. Ion channels are located at the surface membrane of cells, giving them the unique ability to communicate with the environment, as well as the membrane of intracellular organelles, allowing them to regulate internal homeostasis. Ion channels are fundamentally important for human health and diseases, and are important targets for pharmaceuticals in mental illness, heart disease, anesthesia, pain and other clinical applications. The modern methods used in their study are powerful and diverse, ranging from single ion-channel measurement techniques to models of ion channel diseases in animals, and human clinical trials for ion channel drugs. All three volumes give the reader an introduction to fundamental concepts needed to understand the mechanism of ion channels, a guide to the technical aspects of ion channel research, offer a modern guide to the properties of major ion channel families, and include coverage of key examples of regulatory, physiological, and disease roles for ion channels.