Download Free Essays In Constructive Mathematics Book in PDF and EPUB Free Download. You can read online Essays In Constructive Mathematics and write the review.

Contents and treatment are fresh and very different from the standard treatments Presents a fully constructive version of what it means to do algebra The exposition is not only clear, it is friendly, philosophical, and considerate even to the most naive or inexperienced reader
This important book by a major American philosopher brings together eleven essays treating problems in logic and the philosophy of mathematics. A common point of view, that mathematical thought is central to our thought in general, underlies the essays. In his introduction, Parsons articulates that point of view and relates it to past and recent discussions of the foundations of mathematics. Mathematics in Philosophy is divided into three parts. Ontology—the question of the nature and extent of existence assumptions in mathematics—is the subject of Part One and recurs elsewhere. Part Two consists of essays on two important historical figures, Kant and Frege, and one contemporary, W. V. Quine. Part Three contains essays on the three interrelated notions of set, class, and truth.
This volume is a collection of essays in honour of Professor Mohammad Ardeshir. It examines topics which, in one way or another, are connected to the various aspects of his multidisciplinary research interests. Based on this criterion, the book is divided into three general categories. The first category includes papers on non-classical logics, including intuitionistic logic, constructive logic, basic logic, and substructural logic. The second category is made up of papers discussing issues in the contemporary philosophy of mathematics and logic. The third category contains papers on Avicenna’s logic and philosophy. Mohammad Ardeshir is a full professor of mathematical logic at the Department of Mathematical Sciences, Sharif University of Technology, Tehran, Iran, where he has taught generations of students for around a quarter century. Mohammad Ardeshir is known in the first place for his prominent works in basic logic and constructive mathematics. His areas of interest are however much broader and include topics in intuitionistic philosophy of mathematics and Arabic philosophy of logic and mathematics. In addition to numerous research articles in leading international journals, Ardeshir is the author of a highly praised Persian textbook in mathematical logic. Partly through his writings and translations, the school of mathematical intuitionism was introduced to the Iranian academic community.
This classic guide contains four essays on writing mathematical books and papers at the research level and at the level of graduate texts. The authors are all well known for their writing skills, as well as their mathematical accomplishments. The first essay, by Steenrod, discusses writing books, either monographs or textbooks. He gives both general and specific advice, getting into such details as the need for a good introduction. The longest essay is by Halmos, and contains many of the pieces of his advice that are repeated even today: In order to say something well you must have something to say; write for someone; think about the alphabet. Halmos's advice is systematic and practical. Schiffer addresses the issue by examining four types of mathematical writing: research paper, monograph, survey, and textbook, and gives advice for each form of exposition. Dieudonne's contribution is mostly a commentary on the earlier essays, with clear statements of where he disagrees with his coauthors. The advice in this small book will be useful to mathematicians at all levels.
This volume tackles Gödel's two-stage project of first using Husserl's transcendental phenomenology to reconstruct and develop Leibniz' monadology, and then founding classical mathematics on the metaphysics thus obtained. The author analyses the historical and systematic aspects of that project, and then evaluates it, with an emphasis on the second stage. The book is organised around Gödel's use of Leibniz, Husserl and Brouwer. Far from considering past philosophers irrelevant to actual systematic concerns, Gödel embraced the use of historical authors to frame his own philosophical perspective. The philosophies of Leibniz and Husserl define his project, while Brouwer's intuitionism is its principal foil: the close affinities between phenomenology and intuitionism set the bar for Gödel's attempt to go far beyond intuitionism. The four central essays are `Monads and sets', `On the philosophical development of Kurt Gödel', `Gödel and intuitionism', and `Construction and constitution in mathematics'. The first analyses and criticises Gödel's attempt to justify, by an argument from analogy with the monadology, the reflection principle in set theory. It also provides further support for Gödel's idea that the monadology needs to be reconstructed phenomenologically, by showing that the unsupplemented monadology is not able to found mathematics directly. The second studies Gödel's reading of Husserl, its relation to Leibniz' monadology, and its influence on his publishe d writings. The third discusses how on various occasions Brouwer's intuitionism actually inspired Gödel's work, in particular the Dialectica Interpretation. The fourth addresses the question whether classical mathematics admits of the phenomenological foundation that Gödel envisaged, and concludes that it does not. The remaining essays provide further context. The essays collected here were written and published over the last decade. Notes have been added to record further thoughts, changes of mind, connections between the essays, and updates of references.
A brilliant tour of mathematical thought and a guide to becoming a better thinker, How Not to Be Wrong shows that math is not just a long list of rules to be learned and carried out by rote. Math touches everything we do; It's what makes the world make sense. Using the mathematician's methods and hard-won insights-minus the jargon-professor and popular columnist Jordan Ellenberg guides general readers through his ideas with rigor and lively irreverence, infusing everything from election results to baseball to the existence of God and the psychology of slime molds with a heightened sense of clarity and wonder. Armed with the tools of mathematics, we can see the hidden structures beneath the messy and chaotic surface of our daily lives. How Not to Be Wrong shows us how--Publisher's description.
In these essays Geoffrey Hellman presents a strong case for a healthy pluralism in mathematics and its logics, supporting peaceful coexistence despite what appear to be contradictions between different systems, and positing different frameworks serving different legitimate purposes. The essays refine and extend Hellman's modal-structuralist account of mathematics, developing a height-potentialist view of higher set theory which recognizes indefinite extendability of models and stages at which sets occur. In the first of three new essays written for this volume, Hellman shows how extendability can be deployed to derive the axiom of Infinity and that of Replacement, improving on earlier accounts; he also shows how extendability leads to attractive, novel resolutions of the set-theoretic paradoxes. Other essays explore advantages and limitations of restrictive systems - nominalist, predicativist, and constructivist. Also included are two essays, with Solomon Feferman, on predicative foundations of arithmetic.
In this 2005 book, logic, mathematical knowledge and objects are explored alongside reason and intuition in the exact sciences.
Per Martin-Löf's work on the development of constructive type theory has been of huge significance in the fields of logic and the foundations of mathematics. It is also of broader philosophical significance, and has important applications in areas such as computing science and linguistics. This volume draws together contributions from researchers whose work builds on the theory developed by Martin-Löf over the last twenty-five years. As well as celebrating the anniversary of the birth of the subject it covers many of the diverse fields which are now influenced by type theory. It is an invaluable record of areas of current activity, but also contains contributions from N. G. de Bruijn and William Tait, both important figures in the early development of the subject. Also published for the first time is one of Per Martin-Löf's earliest papers.
The volume includes twenty-five research papers presented as gifts to John L. Bell to celebrate his 60th birthday by colleagues, former students, friends and admirers. Like Bell’s own work, the contributions cross boundaries into several inter-related fields. The contributions are new work by highly respected figures, several of whom are among the key figures in their fields. Some examples: in foundations of maths and logic (William Lawvere, Peter Aczel, Graham Priest, Giovanni Sambin); analytical philosophy (Michael Dummett, William Demopoulos), philosophy of science (Michael Redhead, Frank Arntzenius), philosophy of mathematics (Michael Hallett, John Mayberry, Daniel Isaacson) and decision theory and foundations of economics (Ken Bimore). Most articles are contributions to current philosophical debates, but contributions also include some new mathematical results, important historical surveys, and a translation by Wilfrid Hodges of a key work of arabic logic.