Download Free Esaim Book in PDF and EPUB Free Download. You can read online Esaim and write the review.

Issues in Mathematical Theory and Modeling / 2011 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Mathematical Theory and Modeling. The editors have built Issues in Mathematical Theory and Modeling: 2011 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Mathematical Theory and Modeling in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in Mathematical Theory and Modeling: 2011 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.
Issues in Calculus, Mathematical Analysis, and Nonlinear Research: 2011 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Calculus, Mathematical Analysis, and Nonlinear Research. The editors have built Issues in Calculus, Mathematical Analysis, and Nonlinear Research: 2011 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Calculus, Mathematical Analysis, and Nonlinear Research in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in Calculus, Mathematical Analysis, and Nonlinear Research: 2011 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.
This book presents methods to study the controllability and the stabilization of nonlinear control systems in finite and infinite dimensions. The emphasis is put on specific phenomena due to nonlinearities. In particular, many examples are given where nonlinearities turn out to be essential to get controllability or stabilization. Various methods are presented to study the controllability or to construct stabilizing feedback laws. The power of these methods is illustrated by numerous examples coming from such areas as celestial mechanics, fluid mechanics, and quantum mechanics. The book is addressed to graduate students in mathematics or control theory, and to mathematicians or engineers with an interest in nonlinear control systems governed by ordinary or partial differential equations.
This volume is composed of two parts: Mathematical and Numerical Analysis for Strongly Nonlinear Plasma Models and Exact Controllability and Observability for Quasilinear Hyperbolic Systems and Applications. It presents recent progress and results obtained in the domains related to both subjects without attaching much importance to the details of proofs but rather to difficulties encountered, to open problems and possible ways to be exploited. It will be very useful for promoting further study on some important problems in the future.
This volume gathers contributions from participants of the Introductory School and the IHP thematic quarter on Numerical Methods for PDE, held in 2016 in Cargese (Corsica) and Paris, providing an opportunity to disseminate the latest results and envisage fresh challenges in traditional and new application fields. Numerical analysis applied to the approximate solution of PDEs is a key discipline in applied mathematics, and over the last few years, several new paradigms have appeared, leading to entire new families of discretization methods and solution algorithms. This book is intended for researchers in the field.
This volume comprises the second part of the proceedings of the 10th International Conference on Finite Volumes for Complex Applications, FVCA, held in Strasbourg, France, during October 30 to November 3, 2023. The Finite Volume method, and several of its variants, is a spatial discretization technique for partial differential equations based on the fundamental physical principle of conservation. Recent decades have brought significant success in the theoretical understanding of the method. Many finite volume methods are also built to preserve some properties of the continuous equations, including maximum principles, dissipativity, monotone decay of the free energy, asymptotic stability, or stationary solutions. Due to these properties, finite volume methods belong to the wider class of compatible discretization methods, which preserve qualitative properties of continuous problems at the discrete level. This structural approach to the discretization of partial differential equations becomes particularly important for multiphysics and multiscale applications. In recent years, the efficient implementation of these methods in numerical software packages, more specifically to be used in supercomputers, has drawn some attention. The first volume contains all invited papers, as well as the contributed papers focusing on finite volume schemes for elliptic and parabolic problems. They include structure-preserving schemes, convergence proofs, and error estimates for problems governed by elliptic and parabolic partial differential equations. This volume is focused on finite volume methods for hyperbolic and related problems, such as methods compatible with the low Mach number limit or able to exactly preserve steady solutions, the development and analysis of high order methods, or the discretization of kinetic equations.
In celebration of Haim Brezis's 60th birthday, a conference was held at the Ecole Polytechnique in Paris, with a program testifying to Brezis's wide-ranging influence on nonlinear analysis and partial differential equations. The articles in this volume are primarily from that conference. They present a rare view of the state of the art of many aspects of nonlinear PDEs, as well as describe new directions that are being opened up in this field. The articles, written by mathematicians at the center of current developments, provide somewhat more personal views of the important developments and challenges.
This volume is based on lectures delivered at the 2020 AMS Short Course “Mean Field Games: Agent Based Models to Nash Equilibria,” held January 13–14, 2020, in Denver, Colorado. Mean field game theory offers a robust methodology for studying large systems of interacting rational agents. It has been extraordinarily successful and has continued to develop since its inception. The six chapters that make up this volume provide an overview of the subject, from the foundations of the theory to applications in economics and finance, including computational aspects. The reader will find a pedagogical introduction to the main ingredients, from the forward-backward mean field game system to the master equation. Also included are two detailed chapters on the connection between finite games and mean field games, with a pedestrian description of the different methods available to solve the convergence problem. The volume concludes with two contributions on applications of mean field games and on existing numerical methods, with an opening to machine learning techniques.