Download Free Error Control Systems For Digital Communication And Storage Book in PDF and EPUB Free Download. You can read online Error Control Systems For Digital Communication And Storage and write the review.

For introductory graduate courses in coding for telecommunications engineering, digital communications. This introductory text on error control coding focuses on key implementation issues and performance analysis with applications valuable to both mathematicians and engineers.
This book is for designers and would-be designers of digital communication systems. The general approach of this book is to extract the common principles underlying a range of media and applications and present them in a unified framework. Digital Communication is relevant to the design of a variety of systems, including voice and video digital cellular telephone, digital CATV distribution, wireless LANs, digital subscriber loop, metallic Ethernet, voiceband data modems, and satellite communication systems. New in this Third Edition: New material on recent advances in wireless communications, error-control coding, and multi-user communications has been added. As a result, two new chapters have been added, one on the theory of MIMO channels, and the other on diversity techniques for mitigating fading. Error-control coding has been rewritten to reflect the current state of the art. Chapters 6 through 9 from the Second Edition have been reorganized and streamlined to highlight pulse-amplitude modulation, becoming the new Chapters 5 through 7. Readability is increased by relegating many of the more detailed derivations to appendices and exercise solutions, both of which are included in the book. Exercises, problems, and solutions have been revised and expanded. Three chapters from the previous edition have been moved to the book’s Web site to make room for new material. This book is ideal as a first-year graduate textbook, and is essential to many industry professionals. The book is attractive to both audiences through the inclusion of many practical examples and a practical flavor in the choice of topics. Digital Communication has a Web site at : http://www.ece.gatech.edu/~barry/digital/, where the reader may find additional information from the Second Edition, other supplementary materials, useful links, a problem solutions manual, and errata.
Error-controlled coding techniques are used to detect and/or correct errors that occur in the message transmission in a digital communications system. Wireless personal channels used by mobile communications systems and storage systems for digital multimedia data all require the implementation of error control coding methods. Demonstrating the role of coding in communication and data storage system design, this text illustrates the correct use of codes and the selection of the right code parameters. Relevant decoding techniques and their implementation are discussed in detail. Providing communication systems engineers and students with guidance in the application of error-control coding, this book emphasizes the fundamental concepts of coding theory while minimising the use of mathematical tools. * Reader-friendly approach ti coding in communication systems providing examples of encoding and decoding, information theory and criteria for code selection * Thorogh descriptions of relevant application, including telephony on satellite links, GSM, UMTS and multimedia standards, CD, DVD and MPEG * Provides coverage of the fundamentals of coding and the applications of codes to the design of real error control systems * End of chapter problems to test and develop understanding
With the massive amount of data produced and stored each year, reliable storage and retrieval of information is more crucial than ever. Robust coding and decoding techniques are critical for correcting errors and maintaining data integrity. Comprising chapters thoughtfully selected from the highly popular Coding and Signal Processing for Magnetic Recording Systems, Advanced Error Control Techniques for Data Storage Systems is a finely focused reference to the state-of-the-art error control and modulation techniques used in storage devices. The book begins with an introduction to error control codes, explaining the theory and basic concepts underlying the codes. Building on these concepts, the discussion turns to modulation codes, paying special attention to run-length limited sequences, followed by maximum transition run (MTR) and spectrum shaping codes. It examines the relationship between constrained codes and error control and correction systems from both code-design and architectural perspectives as well as techniques based on convolution codes. With a focus on increasing data density, the book also explores multi-track systems, soft decision decoding, and iteratively decodable codes such as Low-Density Parity-Check (LDPC) Codes, Turbo codes, and Turbo Product Codes. Advanced Error Control Techniques for Data Storage Systems offers a comprehensive collection of theory and techniques that is ideal for specialists working in the field of data storage systems.
Rapid advances in electronic and optical technology have enabled the implementation of powerful error-control codes, which are now used in almost the entire range of information systems with close to optimal performance. These codes and decoding methods are required for the detection and correction of the errors and erasures which inevitably occur in digital information during transmission, storage and processing because of noise, interference and other imperfections. Error-control coding is a complex, novel and unfamiliar area, not yet widely understood and appreciated. This book sets out to provide a clear description of the essentials of the subject, with comprehensive and up-to-date coverage of the most useful codes and their decoding algorithms. A practical engineering and information technology emphasis, as well as relevant background material and fundamental theoretical aspects, provides an in-depth guide to the essentials of Error-Control Coding. Provides extensive and detailed coverage of Block, Cyclic, BCH, Reed-Solomon, Convolutional, Turbo, and Low Density Parity Check (LDPC) codes, together with relevant aspects of Information Theory EXIT chart performance analysis for iteratively decoded error-control techniques Heavily illustrated with tables, diagrams, graphs, worked examples, and exercises Invaluable companion website features slides of figures, algorithm software, updates and solutions to problems Offering a complete overview of Error Control Coding, this book is an indispensable resource for students, engineers and researchers in the areas of telecommunications engineering, communication networks, electronic engineering, computer science, information systems and technology, digital signal processing and applied mathematics.
Essentials of Error-Control Coding Techniques presents error-control coding techniques with an emphasis on the most recent applications. It is written for engineers who use or build error-control coding equipment. Many examples of practical applications are provided, enabling the reader to obtain valuable expertise for the development of a wide range of error-control coding systems. Necessary background knowledge of coding theory (the theory of error-correcting codes) is also included so that the reader is able to assimilate the concepts and the techniques. The book is divided into two parts.
This is a modern textbook on digital communications and is designed for senior undergraduate and graduate students, whilst also providing a valuable reference for those working in the telecommunications industry. It provides a simple and thorough access to a wide range of topics through use of figures, tables, examples and problem sets. The author provides an integrated approach between RF engineering and statistical theory of communications. Intuitive explanations of the theoretical and practical aspects of telecommunications help the reader to acquire a deeper understanding of the topics. The book covers the fundamentals of antennas, channel modelling, receiver system noise, A/D conversion of signals, PCM, baseband transmission, optimum receiver, modulation techniques, error control coding, OFDM, fading channels, diversity and combining techniques, MIMO systems and cooperative communications. It will be an essential reference for all students and practitioners in the electrical engineering field.
The purpose of Error-Control Coding for Data Networks is to provide an accessible and comprehensive overview of the fundamental techniques and practical applications of the error-control coding needed by students and engineers. An additional purpose of the book is to acquaint the reader with the analytical techniques used to design an error-control coding system for many new applications in data networks. Error~control coding is a field in which elegant theory was motivated by practical problems so that it often leads to important useful advances. Claude Shannon in 1948 proved the existence of error-control codes that, under suitable conditions and at rates less than channel capacity, would transmit error-free information for all practical applications. The first practical binary codes were introduced by Richard Hamming and Marcel Golay from which the drama and excitement have infused researchers and engineers in digital communication and error-control coding for more than fifty years. Nowadays, error-control codes are being used in almost all modem digital electronic systems and data networks. Not only is coding equipment being implemented to increase the energy and bandwidth efficiency of communication systems, but coding also provides innovative solutions to many related data-networking problems.
Comprehensive introduction to non-binary error-correction coding techniques Non-Binary Error Control Coding for Wireless Communication and Data Storage explores non-binary coding schemes that have been developed to provide an alternative to the Reed – Solomon codes, which are expected to become unsuitable for use in future data storage and communication devices as the demand for higher data rates increases. This book will look at the other significant non-binary coding schemes, including non-binary block and ring trellis-coded modulation (TCM) codes that perform well in fading conditions without any expansion in bandwidth use, and algebraic-geometric codes which are an extension of Reed-Solomon codes but with better parameters. Key Features: Comprehensive and self-contained reference to non-binary error control coding starting from binary codes and progressing up to the latest non-binary codes Explains the design and construction of good non-binary codes with descriptions of efficient non-binary decoding algorithms with applications for wireless communication and high-density data storage Discusses the application to specific cellular and wireless channels, and also magnetic storage channels that model the reading of data from the magnetic disc of a hard drive. Includes detailed worked examples for each coding scheme to supplement the concepts described in this book Focuses on the encoding, decoding and performance of both block and convolutional non-binary codes, and covers the Kötter-Vardy algorithm and Non-binary LDPC codes This book will be an excellent reference for researchers in the wireless communication and data storage communities, as well as development/research engineers in telecoms and storage companies. Postgraduate students in these fields will also find this book of interest.