Download Free Error Control And Adaptivity In Scientific Computing Book in PDF and EPUB Free Download. You can read online Error Control And Adaptivity In Scientific Computing and write the review.

One of the main ways by which we can understand complex processes is to create computerised numerical simulation models of them. Modern simulation tools are not used only by experts, however, and reliability has therefore become an important issue, meaning that it is not sufficient for a simulation package merely to print out some numbers, claiming them to be the desired results. An estimate of the associated error is also needed. The errors may derive from many sources: errors in the model, errors in discretization, rounding errors, etc. Unfortunately, this situation does not obtain for current packages and there is a great deal of room for improvement. Only if the error can be estimated is it possible to do something to reduce it. The contributions in this book cover many aspects of the subject, the main topics being error estimates and error control in numerical linear algebra algorithms (closely related to the concept of condition numbers), interval arithmetic and adaptivity for continuous models.
Handbook on Numerical Methods for Hyperbolic Problems: Applied and Modern Issues details the large amount of literature in the design, analysis, and application of various numerical algorithms for solving hyperbolic equations that has been produced in the last several decades. This volume provides concise summaries from experts in different types of algorithms, so that readers can find a variety of algorithms under different situations and become familiar with their relative advantages and limitations. - Provides detailed, cutting-edge background explanations of existing algorithms and their analysis - Presents a method of different algorithms for specific applications and the relative advantages and limitations of different algorithms for engineers or those involved in applications - Written by leading subject experts in each field, the volumes provide breadth and depth of content coverage
This volume collects selected contributions from the “Fourth Tetrahedron Workshop on Grid Generation for Numerical Computations”, which was held in Verbania, Italy in July 2013. The previous editions of this Workshop were hosted by the Weierstrass Institute in Berlin (2005), by INRIA Rocquencourt in Paris (2007), and by Swansea University (2010). This book covers different, though related, aspects of the field: the generation of quality grids for complex three-dimensional geometries; parallel mesh generation algorithms; mesh adaptation, including both theoretical and implementation aspects; grid generation and adaptation on surfaces – all with an interesting mix of numerical analysis, computer science and strongly application-oriented problems.
An invaluable instrument for gaining a wide-ranging perspective on the latest developments in mathematical aspects of scientific computing, discovering new applications and the most recent developments in long-standing applications. Provides an insight into the state of the art of Numerical Mathematics and, more generally, into the field of Advanced Applications.
These Lecture Notes have been compiled from the material presented by the second author in a lecture series ('Nachdiplomvorlesung') at the Department of Mathematics of the ETH Zurich during the summer term 2002. Concepts of 'self adaptivity' in the numerical solution of differential equations are discussed with emphasis on Galerkin finite element methods. The key issues are a posteriori er ror estimation and automatic mesh adaptation. Besides the traditional approach of energy-norm error control, a new duality-based technique, the Dual Weighted Residual method (or shortly D WR method) for goal-oriented error estimation is discussed in detail. This method aims at economical computation of arbitrary quantities of physical interest by properly adapting the computational mesh. This is typically required in the design cycles of technical applications. For example, the drag coefficient of a body immersed in a viscous flow is computed, then it is minimized by varying certain control parameters, and finally the stability of the resulting flow is investigated by solving an eigenvalue problem. 'Goal-oriented' adaptivity is designed to achieve these tasks with minimal cost. The basics of the DWR method and various of its applications are described in the following survey articles: R. Rannacher [114], Error control in finite element computations. In: Proc. of Summer School Error Control and Adaptivity in Scientific Computing (H. Bulgak and C. Zenger, eds), pp. 247-278. Kluwer Academic Publishers, 1998. M. Braack and R. Rannacher [42], Adaptive finite element methods for low Mach-number flows with chemical reactions.
This volume contains major lectures given at ENUMATH 99, the 3rd European Conference on Numerical Mathematics and Advanced Applications.The ENUMATH conferences were established in 1995 to provide a forum for discussing current topics in numerical mathematics. They convene leading experts and young scientists, with special emphasis on contributions from Europe. Recent results and new trends are discussed in the analysis of numerical algorithms, as well as their application to challenging scientific and industrial problems.The topics of ENUMATH 99 included finite element methods, a posteriori error control and adaptive mesh design, non-matching grids, least-squares methods for partial differential equations, boundary element methods and optimization in partial differential equations. Apart from theoretical aspects, a major part of the conference was devoted to numerical methods in interdisciplinary applications such as problems in computational fluid, electrodynamics, telecommunications software, as well as visualization.
An annual volume presenting substantive survey articles in numerical analysis and scientific computing.
Error Control, Adaptive Discretizations, and Applications, Volume 58, Part One highlights new advances in the field, with this new volume presenting interesting chapters written by an international board of authors. Chapters in this release cover hp adaptive Discontinuous Galerkin strategies driven by a posteriori error estimation with application to aeronautical flow problems, An anisotropic mesh adaptation method based on gradient recovery and optimal shape elements, and Model reduction techniques for parametrized nonlinear partial differential equations. - Covers multi-scale modeling - Includes updates on data-driven modeling - Presents the latest information on large deformations of multi-scale materials
Main aspects of the efficient treatment of partial differential equations are discretisation, multilevel/multigrid solution and parallelisation. These distinct topics are covered from the historical background to modern developments. It is demonstrated how the ingredients can be put together to give an adaptive and parallel multilevel approach for the solution of elliptic boundary value problems. Error estimators and adaptive grid refinement techniques for ordinary and for sparse grid discretisations are presented. Different types of additive and multiplicative multilevel solvers are discussed with respect to parallel implementation and application to adaptive refined grids. Efficiency issues are treated both for the sequential multilevel methods and for the parallel version by hash table storage techniques. Finally, space-filling curve enumeration for parallel load balancing and processor cache efficiency are discussed.
Self-adaptive discretization methods are now an indispensable tool for the numerical solution of partial differential equations that arise from physical and technical applications. The aim is to obtain a numerical solution within a prescribed tolerance using a minimal amount of work. The main tools in achieving this goal are a posteriori error estimates which give global and local information on the error of the numerical solution and which can easily be computed from the given numerical solution and the data of the differential equation. This book reviews the most frequently used a posteriori error estimation techniques and applies them to a broad class of linear and nonlinear elliptic and parabolic equations. Although there are various approaches to adaptivity and a posteriori error estimation, they are all based on a few common principles. The main aim of the book is to elaborate these basic principles and to give guidelines for developing adaptive schemes for new problems. Chapters 1 and 2 are quite elementary and present various error indicators and their use for mesh adaptation in the framework of a simple model problem. The basic principles are introduced using a minimal amount of notations and techniques providing a complete overview for the non-specialist. Chapters 4-6 on the other hand are more advanced and present a posteriori error estimates within a general framework using the technical tools collected in Chapter 3. Most sections close with a bibliographical remark which indicates the historical development and hints at further results.