Download Free Ernst Schroder On Algebra And Logic Book in PDF and EPUB Free Download. You can read online Ernst Schroder On Algebra And Logic and write the review.

This volume offers English translations of three early works by Ernst Schröder (1841-1902), a mathematician and logician whose philosophical ruminations and pathbreaking contributions to algebraic logic attracted the admiration and ire of figures such as Dedekind, Frege, Husserl, and C. S. Peirce. Today he still engages the sympathetic interest of logicians and philosophers. The works translated record Schröder’s journey out of algebra into algebraic logic and document his transformation of George Boole’s opaque and unwieldy logical calculus into what we now recognize as Boolean algebra. Readers interested in algebraic logic and abstract algebra can look forward to a tour of the early history of those fields with a guide who was exceptionally thorough, unfailingly honest, and deeply reflective.
This book is an account of the important influence on the development of mathematical logic of Charles S. Peirce and his student O.H. Mitchell, through the work of Ernst Schröder, Leopold Löwenheim, and Thoralf Skolem. As far as we know, this book is the first work delineating this line of influence on modern mathematical logic.
This multi-authored effort, Mathematics of the nineteenth century (to be fol lowed by Mathematics of the twentieth century), is a sequel to the History of mathematics fram antiquity to the early nineteenth century, published in three 1 volumes from 1970 to 1972. For reasons explained below, our discussion of twentieth-century mathematics ends with the 1930s. Our general objectives are identical with those stated in the preface to the three-volume edition, i. e. , we consider the development of mathematics not simply as the process of perfecting concepts and techniques for studying real-world spatial forms and quantitative relationships but as a social process as weIl. Mathematical structures, once established, are capable of a certain degree of autonomous development. In the final analysis, however, such immanent mathematical evolution is conditioned by practical activity and is either self-directed or, as is most often the case, is determined by the needs of society. Proceeding from this premise, we intend, first, to unravel the forces that shape mathe matical progress. We examine the interaction of mathematics with the social structure, technology, the natural sciences, and philosophy. Throughan anal ysis of mathematical history proper, we hope to delineate the relationships among the various mathematical disciplines and to evaluate mathematical achievements in the light of the current state and future prospects of the science. The difficulties confronting us considerably exceeded those encountered in preparing the three-volume edition.
Offering a bold new vision on the history of modern logic, Lukas M. Verburgt and Matteo Cosci focus on the lasting impact of Aristotle's syllogism between the 1820s and 1930s. For over two millennia, deductive logic was the syllogism and syllogism was the yardstick of sound human reasoning. During the 19th century, this hegemony fell apart and logicians, including Boole, Frege and Peirce, took deductive logic far beyond its Aristotelian borders. However, contrary to common wisdom, reflections on syllogism were also instrumental to the creation of new logical developments, such as first-order logic and early set theory. This volume presents the period under discussion as one of both tradition and innovation, both continuity and discontinuity. Modern logic broke away from the syllogistic tradition, but without Aristotle's syllogism, modern logic would not have been born. A vital follow up to The Aftermath of Syllogism, this book traces the longue durée history of syllogism from Richard Whately's revival of formal logic in the 1820s through the work of David Hilbert and the Göttingen school up to the 1930s. Bringing together a group of major international experts, it sheds crucial new light on the emergence of modern logic and the roots of analytic philosophy in the 19th and early 20th centuries.
This volume contains English translations of Frege's early writings in logic and philosophy and of relevant reviews by other leading logicians. Professor Bynum has contributed a biographical essay, introduction, and extensive bibliography. ong Copy
Essays on Husserl’s Logic and Philosophy of Mathematics sets out to fill up a lacuna in the present research on Husserl by presenting a precise account of Husserl’s work in the field of logic, of the philosophy of logic and of the philosophy of mathematics. The aim is to provide an in-depth reconstruction and analysis of the discussion between Husserl and his most important interlocutors, and to clarify pivotal ideas of Husserl’s by considering their reception and elaboration by some of his disciples and followers, such as Oskar Becker and Jacob Klein, as well as their influence on some of the most significant logicians and mathematicians of the past century, such as Luitzen E. J. Brouwer, Rudolf Carnap, Kurt Gödel and Hermann Weyl. Most of the papers consider Husserl and another scholar – e.g. Leibniz, Kant, Bolzano, Brentano, Cantor, Frege – and trace out and contextualize lines of influence, points of contact, and points of disagreement. Each essay is written by an expert of the field, and the volume includes contributions both from the analytical tradition and from the phenomenological one.
Burt C. Hopkins presents the first in-depth study of the work of Edmund Husserl and Jacob Klein on the philosophical foundations of the logic of modern symbolic mathematics. Accounts of the philosophical origins of formalized concepts—especially mathematical concepts and the process of mathematical abstraction that generates them—have been paramount to the development of phenomenology. Both Husserl and Klein independently concluded that it is impossible to separate the historical origin of the thought that generates the basic concepts of mathematics from their philosophical meanings. Hopkins explores how Husserl and Klein arrived at their conclusion and its philosophical implications for the modern project of formalizing all knowledge.
With the publication of the present volume, the Handbook of the History of Logic turns its attention to the rise of modern logic. The period covered is 1685-1900, with this volume carving out the territory from Leibniz to Frege. What is striking about this period is the earliness and persistence of what could be called 'the mathematical turn in logic'. Virtually every working logician is aware that, after a centuries-long run, the logic that originated in antiquity came to be displaced by a new approach with a dominantly mathematical character. It is, however, a substantial error to suppose that the mathematization of logic was, in all essentials, Frege's accomplishment or, if not his alone, a development ensuing from the second half of the nineteenth century. The mathematical turn in logic, although given considerable torque by events of the nineteenth century, can with assurance be dated from the final quarter of the seventeenth century in the impressively prescient work of Leibniz. It is true that, in the three hundred year run-up to the Begriffsschrift, one does not see a smoothly continuous evolution of the mathematical turn, but the idea that logic is mathematics, albeit perhaps only the most general part of mathematics, is one that attracted some degree of support throughout the entire period in question. Still, as Alfred North Whitehead once noted, the relationship between mathematics and symbolic logic has been an "uneasy" one, as is the present-day association of mathematics with computing. Some of this unease has a philosophical texture. For example, those who equate mathematics and logic sometimes disagree about the directionality of the purported identity. Frege and Russell made themselves famous by insisting (though for different reasons) that logic was the senior partner. Indeed logicism is the view that mathematics can be re-expressed without relevant loss in a suitably framed symbolic logic. But for a number of thinkers who took an algebraic approach to logic, the dependency relation was reversed, with mathematics in some form emerging as the senior partner. This was the precursor of the modern view that, in its four main precincts (set theory, proof theory, model theory and recursion theory), logic is indeed a branch of pure mathematics. It would be a mistake to leave the impression that the mathematization of logic (or the logicization of mathematics) was the sole concern of the history of logic between 1665 and 1900. There are, in this long interval, aspects of the modern unfolding of logic that bear no stamp of the imperial designs of mathematicians, as the chapters on Kant and Hegcl make clear. Of the two, Hcgel's influence on logic is arguably the greater, serving as a spur to the unfolding of an idealist tradition in logic - a development that will be covered in a further volume, British Logic in the Nineteenth Century.