Download Free Equivariant Homotopy And Cohomology Theory Book in PDF and EPUB Free Download. You can read online Equivariant Homotopy And Cohomology Theory and write the review.

This volume introduces equivariant homotopy, homology, and cohomology theory, along with various related topics in modern algebraic topology. It explains the main ideas behind some of the most striking recent advances in the subject. The works begins with a development of the equivariant algebraic topology of spaces culminating in a discussion of the Sullivan conjecture that emphasizes its relationship with classical Smith theory. The book then introduces equivariant stable homotopy theory, the equivariant stable homotopy category, and the most important examples of equivariant cohomology theories. The basic machinery that is needed to make serious use of equivariant stable homotopy theory is presented next, along with discussions of the Segal conjecture and generalized Tate cohomology. Finally, the book gives an introduction to "brave new algebra", the study of point-set level algebraic structures on spectra and its equivariant applications. Emphasis is placed on equivariant complex cobordism, and related results on that topic are presented in detail.
This volume introduces equivariant homotopy, homology, and cohomology theory, along with various related topics in modern algebraic topology. It explains the main ideas behind some of the most striking recent advances in the subject. The book begins with a development of the equivariant algebraic topology of spaces culminating in a discussion of the Sullivan conjecture that emphasizes its relationship with classical Smith theory. It then introduces equivariant stable homotopy theory, the equivariant stable homotopy category, and the most important examples of equivariant cohomology theories. T.
This book gives a clear introductory account of equivariant cohomology, a central topic in algebraic topology. Equivariant cohomology is concerned with the algebraic topology of spaces with a group action, or in other words, with symmetries of spaces. First defined in the 1950s, it has been introduced into K-theory and algebraic geometry, but it is in algebraic topology that the concepts are the most transparent and the proofs are the simplest. One of the most useful applications of equivariant cohomology is the equivariant localization theorem of Atiyah-Bott and Berline-Vergne, which converts the integral of an equivariant differential form into a finite sum over the fixed point set of the group action, providing a powerful tool for computing integrals over a manifold. Because integrals and symmetries are ubiquitous, equivariant cohomology has found applications in diverse areas of mathematics and physics. Assuming readers have taken one semester of manifold theory and a year of algebraic topology, Loring Tu begins with the topological construction of equivariant cohomology, then develops the theory for smooth manifolds with the aid of differential forms. To keep the exposition simple, the equivariant localization theorem is proven only for a circle action. An appendix gives a proof of the equivariant de Rham theorem, demonstrating that equivariant cohomology can be computed using equivariant differential forms. Examples and calculations illustrate new concepts. Exercises include hints or solutions, making this book suitable for self-study.
This volume introduces equivariant homotopy, homology, and cohomology theory, along with various related topics in modern algebraic topology. It explains the main ideas behind some of the most striking recent advances in the subject. The works begins with a development of the equivariant algebraic topology of spaces culminating in a discussion of the Sullivan conjecture that emphasizes its relationship with classical Smith theory. The book then introduces equivariant stable homotopy theory, the equivariant stable homotopy category, and the most important examples of equivariant cohomology theories. The basic machinery that is needed to make serious use of equivariant stable homotopy theory is presented next, along with discussions of the Segal conjecture and generalized Tate cohomology. Finally, the book gives an introduction to "brave new algebra", the study of point-set level algebraic structures on spectra and its equivariant applications. Emphasis is placed on equivariant complex cobordism, and related results on that topic are presented in detail.
J. Frank Adams, the founder of stable homotopy theory, gave a lecture series at the University of Chicago in 1967, 1970, and 1971, the well-written notes of which are published in this classic in algebraic topology. The three series focused on Novikov's work on operations in complex cobordism, Quillen's work on formal groups and complex cobordism, and stable homotopy and generalized homology. Adams's exposition of the first two topics played a vital role in setting the stage for modern work on periodicity phenomena in stable homotopy theory. His exposition on the third topic occupies the bulk of the book and gives his definitive treatment of the Adams spectral sequence along with many detailed examples and calculations in KU-theory that help give a feel for the subject.
Filling a gap in the literature, this book takes the reader to the frontiers of equivariant topology, the study of objects with specified symmetries. The discussion is motivated by reference to a list of instructive “toy” examples and calculations in what is a relatively unexplored field. The authors also provide a reading path for the first-time reader less interested in working through sophisticated machinery but still desiring a rigorous understanding of the main concepts. The subject’s classical counterparts, ordinary homology and cohomology, dating back to the work of Henri Poincaré in topology, are calculational and theoretical tools which are important in many parts of mathematics and theoretical physics, particularly in the study of manifolds. Similarly powerful tools have been lacking, however, in the context of equivariant topology. Aimed at advanced graduate students and researchers in algebraic topology and related fields, the book assumes knowledge of basic algebraic topology and group actions.
Obstruction theoretic methods are introduced into isovariant homotopy theory for a class of spaces with group actions; the latter includes all smooth actions of cyclic groups of prime power order. The central technical result is an equivalence between isovariant homotopy and specific equivariant homotopy theories for diagrams under suitable conditions. This leads to isovariant Whitehead theorems, an obstruction-theoretic approach to isovariant homotopy theory with obstructions in cohomology groups of ordinary and equivalent diagrams, and qualitative computations for rational homotopy groups of certain spaces of isovariant self maps of linear spheres. The computations show that these homotopy groups are often far more complicated than the rational homotopy groups for the corresponding spaces of equivariant self maps. Subsequent work will use these computations to construct new families of smooth actions on spheres that are topologically linear but differentiably nonlinear.
This book will provide readers with an overview of some of the major developments in current research in algebraic topology. Representing some of the leading researchers in the field, the book contains the proceedings of the International Conference on Algebraic Topology, held at Northwestern University in March, 1988. Several of the lectures at the conference were expository and will therefore appeal to topologists in a broad range of areas. The primary emphasis of the book is on homotopy theory and its applications. The topics covered include elliptic cohomology, stable and unstable homotopy theory, classifying spaces, and equivariant homotopy and cohomology. Geometric topics--such as knot theory, divisors and configurations on surfaces, foliations, and Siegel spaces--are also discussed. Researchers wishing to follow current trends in algebraic topology will find this book a valuable resource.