Download Free Equivariant Degree Theory Book in PDF and EPUB Free Download. You can read online Equivariant Degree Theory and write the review.

This book presents a new degree theory for maps which commute with a group of symmetries. This degree is no longer a single integer but an element of the group of equivariant homotopy classes of maps between two spheres and depends on the orbit types of the spaces. The authors develop completely the theory and applications of this degree in a self-contained presentation starting with only elementary facts. The first chapter explains the basic tools of representation theory, homotopy theory and differential equations needed in the text. Then the degree is defined and its main abstract properties are derived. The next part is devoted to the study of equivariant homotopy groups of spheres and to the classification of equivariant maps in the case of abelian actions. These groups are explicitely computed and the effects of symmetry breaking, products and composition are thorougly studied. The last part deals with computations of the equivariant index of an isolated orbit and of an isolated loop of stationary points. Here differential equations in a variety of situations are considered: symmetry breaking, forcing, period doubling, twisted orbits, first integrals, gradients etc. Periodic solutions of Hamiltonian systems, in particular spring-pendulum systems, are studied as well as Hopf bifurcation for all these situations.
In this paper, we consider general [italic]S1-actions, which may differ on the domain and on the range, with isotropy subspaces with one dimension more on the domain. In the special case of self-maps the [italic]S1-degree is given by the usual degree of the invariant part, while for one parameter [italic]S1-maps one has an integer for each isotropy subgroup different from [italic]S1. In particular we recover all the [italic]S1-degrees introduced in special cases by other authors and we are also able to interpret period doubling results on the basis of our [italic]S1-degree. The applications concern essentially periodic solutions of ordinary differential equations.
This work is devoted to a detailed study of the equivariant degree and its applications for the case of an S ]1-action. This degree is an element of the equivariant homotopy group of spheres, which are computed in step-by-step extension process. Applications include the index of an isolated orbit, branching and Hopf bifurcation, and period doubling and symmetry breaking for systems of autonomous differential equations. The authors have paid special attention to making the text as self-contained as possible, so that the only background required is some familiarity with the basic ideas of homotopy theory and of Floquet theory in differential equations. Illustrating in a natural way the interplay between topology and analysis, this book will be of interest to researchers and graduate students.
The book introduces conceptually simple geometric ideas based on the existence of fundamental domains for metric G- spaces. A list of the problems discussed includes Borsuk-Ulam type theorems for degrees of equivariant maps in finite and infinite dimensional cases, extensions of equivariant maps and equivariant homotopy classification, genus and G-category, elliptic boundary value problem, equivalence of p-group representations. The new results and geometric clarification of several known theorems presented here will make it interesting and useful for specialists in equivariant topology and its applications to non-linear analysis and representation theory.
The book introduces conceptually simple geometric ideas based on the existence of fundamental domains for metric G- spaces. A list of the problems discussed includes Borsuk-Ulam type theorems for degrees of equivariant maps in finite and infinite dimensional cases, extensions of equivariant maps and equivariant homotopy classification, genus and G-category, elliptic boundary value problem, equivalence of p-group representations. The new results and geometric clarification of several known theorems presented here will make it interesting and useful for specialists in equivariant topology and its applications to non-linear analysis and representation theory.
This textbook treats the classical parts of mapping degree theory, with a detailed account of its history traced back to the first half of the 18th century. After a historical first chapter, the remaining four chapters develop the mathematics. An effort is made to use only elementary methods, resulting in a self-contained presentation. Even so, the book arrives at some truly outstanding theorems: the classification of homotopy classes for spheres and the Poincare-Hopf Index Theorem, as well as the proofs of the original formulations by Cauchy, Poincare, and others. Although the mapping degree theory you will discover in this book is a classical subject, the treatment is refreshing for its simple and direct style. The straightforward exposition is accented by the appearance of several uncommon topics: tubular neighborhoods without metrics, differences between class 1 and class 2 mappings, Jordan Separation with neither compactness nor cohomology, explicit constructions of homotopy classes of spheres, and the direct computation of the Hopf invariant of the first Hopf fibration. The book is suitable for a one-semester graduate course. There are 180 exercises and problems of different scope and difficulty.
The Boundary value/periodic problems for the nonlinear equation (or, more generally, second order nonlinear ODEs) have been the focus of nonlinear analysis study for a long time. The goal of this book is to show how the equivariant degree theory can be used for the systematic study of multiple solutions to several (symmetric) generalizations of BVP and for the classification of symmetric properties of these solutions. There are several classical methods of nonlinear analysis used to solve the BVP. However, their application encounters serious difficulties if: the group of symmetries is large, the dimension of the problem is high, and multiplicities of eigenvalues of linearizations are large, etc. In this book, we: (i) set up the abstract functional analysis framework for studying symmetric properties of multiple solutions to symmetric generalizations of the BV problem via the equivariant degree approach; (ii) describe wide classes of second order BVPs admitting dihedral symmetries to which the abstract theory can be effectively applied; (iii) and apply the obtained results to several classes of implicit second order symmetric differential equations.